Tag Archives: Galaxias

La extraña galaxia sin materia oscura.

Entorno de la galaxia NGC1052 (esferoide blanquecino a la izquierda), en cuyas proximidades se encuentra NGC1052-DF2. / Adam Block/Mount Lemmon SkyCenter/University of Arizona

Aunque todavía no se ha podido detectar, la materia oscura constituye alrededor del 27% del universo y sus efectos se dejan notar en el movimiento de las galaxias. Sin embargo, investigadores de la Universidad de Yale (EE UU) han comprobado que en al menos una galaxia, denominada NGC1052-DF2, no aparece ni rastro de materia oscura, solo la masa de sus cúmulos de estrellas.

Universidad de Yale

Investigadores de EE UU y Canadá han encontrado una lejana galaxia que, de forma inesperada, no contiene materia oscura, ese misterioso material cuya masa parece tener efectos gravitatorios sobre la materia visible, como las estrellas y las galaxias, afectando a sus movimientos por el universo.De hecho, los científicos piensan que el 27 % del universo es materia oscura, siendo la materia ordinaria, la que vemos, tan solo el 5%. El 68 % restante correspondería a la también enigmática energía oscura.En la mayoría de las galaxias, la materia oscura es el tipo predominante de materia. En galaxias como la Vía Láctea, normalmente hay alrededor de 30 veces más materia oscura que materia ‘normal’ (la que se calcula con la masa de sus estrellas). Curiosamente, esta proporción de materia oscura aumenta tanto en galaxias mayores como en las menores a la nuestra.Por ejemplo, las galaxias enanas tienen 400 veces más materia oscura.En este contexto, el equipo liderado por el profesor Pieter van Dokkum de la Universidad de Yale ha analizado la galaxia NGC1052-DF2 (situada cerca de NGC 1052 en la constelación de Cetus, a unos 63 millones de años luz) y ha descubierto que carece de materia oscura.

Masa solo de estrellas

“Basándonos en los movimientos de diez cúmulos de brillantes estrellas que se encuentran dentro de ella, hemos encontrado que la masa de NGC1052-DF2 es esencialmente la misma que la masa aparente de las estrellas visibles”, señalan los autores, que destacan: “Este hallazgo sugiere que esta galaxia, a diferencia de otras, no parece tener ninguna materia oscura en absoluto”.Paradójicamente, según los científicos, el hecho de descubrir galaxias como NGC1052-DF2 puede ayudar a descartar algunas de las teorías cosmológicas que se han propuesto como alternativas a la materia oscura, incluidas las que consideran que habría que modificar las leyes de Newton para explicar el movimiento de las galaxias.

Créditos:sinc

Los telescopios Hubble y Spitzer encuentran la ‘aguja en el pajar’.

Un estudio intensivo en las profundidades del universo por los telescopios espaciales Hubble y Spitzer de la NASA ha dado como resultado la proverbial “aguja en un pajar”..    Se trata de la galaxia más lejana que se haya visto en una imagen que ha sido estirada y amplicada por un fenómeno llamado lente gravitacional.    La galaxia embrionaria llamada SPT0615-JD existía cuando el universo tenía solo 500 millones de años. Aunque se han visto algunas otras galaxias primitivas en esta época temprana, en esencia se han visto como puntos rojos debido a su pequeño tamaño y tremendas distancias.    Sin embargo, en este caso, el campo gravitacional de un cúmulo de galaxias de primer plano masivo no solo amplicó la luz de la galaxia de fondo sino que también proporcionó una imagen de arco (aproximadamente de 2 segundos de arco de longitud).  “No se ha encontrado ninguna galaxia candidata a una distancia tan grande que también proporcione la información espacial que tiene esta imagen de arco.

Al analizar los efectos de las lentes gravitacionales sobre la imagen de esta galaxia, podemos determinar su tamaño y forma reales”, dijo en un comunicado el autor principal del estudio, Brett Salmon, del Space Telescope Science Institute en Baltimore, Maryland. Presentó su investigación en la 231 reunión de la American Astronomical Society en Washington.    Predicha en primer lugar por Albert Einstein hace un siglo, la deformación del espacio por la gravedad de un objeto en primer plano masivo puede iluminar y distorsionar las imágenes de objetos de fondo mucho más distantes. Los astrónomos usan este efecto de ‘lente zoom’ para buscar imágenes amplicadas de galaxias distantes que de otro modo no serían visibles con los telescopios actuales.    SPT0615-JD se identicó en la encuesta RELICS (Reionization Lensing Cluster Survey) del Hubble y en el programa complementario S-RELICS del Spitzer. “RELICS fue diseñado para descubrir galaxias distantes como estas que se magnican lo suciente como para estudiarlas en detalle”, dijo Dan Coe, investigador principal de RELICS.    RELICS observó 41 cúmulos de galaxias masivas por primera vez en el infrarrojo con el Hubble para buscar galaxias con lentes distantes. Uno de estos fue SPT-CL J0615-5746, que analizó Salmon para hacer este descubrimiento.

Al encontrar el arco de la lente, Salmon pensó: “¡Oh, guau! ¡Creo que estamos aprendiendo algo!”    Al combinar los datos de Hubble y Spitzer, Salmon calculó el tiempo de retroceso a la galaxia en 13.300 millones de años. El análisis preliminar sugiere que la diminuta galaxia pesa no más de 3 mil millones de masas solares (aproximadamente 1/100 de la masa de nuestra galaxia de la Vía Láctea completamente desarrollada). Tiene menos de 2.500 años luz de diámetro, la mitad del tamaño de la Pequeña Nube de Magallanes, una galaxia satélite de nuestra Vía Láctea. El objeto se considera prototípico de las galaxias jóvenes que surgieron durante la época poco después del Big Bang.    La galaxia se encuentra justo en los límites de las capacidades de detección de Hubble, pero solo es el comienzo de las capacidades del futurto telescopio espacial James Webb, dijo Salmon. “Esta galaxia es un objetivo emocionante para la ciencia con el telescopio Webb, ya que ofrece una oportunidad única para resolver poblaciones estelares en el universo primitivo”. La espectroscopía con Webb permitirá a los astrónomos estudiar en detalle la tormenta de fuego de la actividad de nacimientos de estrellas que tiene lugar en esta época temprana y resolver su subestructura.

Créditos:ep

Un ‘renacuajo’ galáctico surca el cielo.

Podría parecer la estrella que guio a los Reyes Magos, pero en realidad es la galaxia Kiso 5639, situada a unos 82 millones de años luz de nosotros.Aunque tiene una forma más bien plana, su inclinación hace que parezca una especie de cohete, con una cabeza fulgurante y una larga cola salpicada de estrellas. Debido a su morfología, se clasifica en la categoría de galaxias ‘renacuajo’.El color rosa de la cabeza es fruto del brillo del hidrógeno, provocado por el nacimiento de nuevas estrellas con una masa equivalente a un millón de soles. Se encuentran agrupadas en grandes cúmulos formados hace menos de un millón de años.Por su parte, la cola, salpicada de brillantes estrellas azules, contiene al menos cuatro regiones de formación estelar, donde los astros son más antiguos que las de la cabeza. Unos tenues filamentos de gas y estrellas se prolongan más allá del cuerpo principal de este renacuajo cósmico.La imagen fue captada por el telescopio espacial Hubble de la NASA y la Agencia Espacial Europea (ESA) en 2015, pero la ESA la ha recuperado esta semana para dar la bienvenida a 2018 con estos gigantescos fuegos artificiales.

Créditos:sinc

Estudiantes de la ULL descubren la nova más brillante en la Galaxia de Andrómeda de 2017.

Un grupo de alumnos del Máster en Astrofísica de la Universidad de La Laguna (ULL) y el Instituto de Astrofísica de Canarias (IAC) (España) detectaron esta nova, junto con otra más, en la galaxia de Andrómeda durante sus prácticas académicas en los Observatorios de Canarias.”En la galaxia de Andrómeda se descubren unas cincuenta novas cada año. En total hay 1.106 conocidas, pero muy pocas tan brillantes y luminosas como la que descubrimos durante las observaciones con la cámara CAMELOT del telescopio IAC-80 la noche del 11 de noviembre”, explica Laura Hermosa Muñoz, estudiante del Máster en Astrofísica, quien descubrió, junto a sus compañeras del grupo, la nova más brillante detectada en Andrómeda en 2017, denominada M31N 2017-11d.

df808461b

Imagen de la galaxia de Andrómeda (también denominada M31) sobre la que se representan las 1.106 novas conocidas en esa galaxia, de las cuales, una de ellas, M31N2017-11d, la más brillante de 2017, ha sido descubierta recientemente, en la noche del 11 de noviembre, con el telescopio IAC-80 del Observatorio del Teide durante las prácticas de observación astronómica del Máster en Astrofísica de la Universidad de La Laguna (Hermosa Muñoz et. al 2017a). Los recuadros muestran las “cartas de identificación” de esa nova (abajo a la izquierda) así como la de otra, M31N2017-10a (arriba), que explotó en octubre y fue también observada por los estudiantes del Máster con el telescopio Isaac Newton del Observatorio del Roque de los Muchachos en la isla de La Palma (Hermosa Muñoz et. al 2017b). (Crédito: Ismael Pérez (ULL/IAC))

Esa misma noche, otro telescopio en Arizona también observaba Andrómeda, pero detectó esa misma nova varias horas después de las observaciones que las estudiantes de la ULL habían realizado desde el Observatorio del Teide (Izaña, Tenerife). “La confirmación de que efectivamente se trataba de una nova fue el resultado de observaciones de otros astrónomos con el telescopio Liverpool del Observatorio del Roque de los Muchachos (Garafía, La Palma) y con el telescopio ruso de 6 metros BAT”, añade Laura Hermosa.”Observar el cielo varias noches con telescopios profesionales en dos de los mejores observatorios del mundo es un privilegio al alcance de los estudiantes del Máster en Astrofísica de la Universidad de La Laguna”, señala María Jesús Arévalo Morales, directora del Departamento de Astrofísica de la ULL e investigadora y coordinadora del área de enseñanza del Instituto de Astrofísica de Canarias (IAC). Y añade, “Y si además las observaciones dan lugar a resultados científicos nuevos e interesantes, el esfuerzo que realizamos en el Departamento de Astrofísica y en el Instituto de Astrofísica de Canarias está completamente recompensado”.

2e537b6cf

“Desde hace varias décadas, el departamento de Astrofísica de la ULL enseña Astrofísica no sólo en las aulas y laboratorios de la Universidad de La Laguna, sino también en las prácticas de observación astronómica que se llevan a cabo todos los cursos con telescopios de los Observatorios del Teide y del Roque de los Muchachos”, comenta César Esteban López, director del Máster en Astrofísica de la ULL e investigador del IAC. En particular, las observaciones de las prácticas del segundo curso del Máster están orientadas al desarrollo de pequeños proyectos donde los estudiantes preparan sus propias observaciones, las llevan a cabo de forma presencial en los Observatorios y, posteriormente, reducen los datos y los analizan comparándolos con la ingente cantidad de datos astronómicos disponibles en los archivos de datos de los observatorios de todo el mundo y de los telescopios espaciales. Los temas de los proyectos abordan diferentes aspectos de la Astrofísica moderna, desde observaciones de galaxias cercanas a la Vía Láctea, como la galaxia de Andrómeda, hasta algunas de las más lejanas del Universo, ayudados por el efecto lente gravitacional de cúmulos de galaxias como los de los Campos Frontera del Telescopio Espacial Hubble.

8c7389fc4

Este curso, entre otros proyectos, los estudiantes apuntaron el IAC-80 y el INT (Isaac Newton Telescope), del Grupo de Telescopios ING, en la dirección de la galaxia de Andrómeda, también conocida como Messier 31 o M31. “Ambos telescopios cuentan con cámaras “CCD” muy eficientes”, comenta Ismael Pérez Fournon, profesor de la ULL e investigador del IAC, responsable de las prácticas de segundo curso. “Nuestra galaxia vecina, Andrómeda, es uno de los mejores laboratorios para entender los procesos físicos del Universo”, añade. Cefeidas, novas y estrellas variables luminosas azules (algunas de ellas con luminosidades superiores a un millón de veces la del Sol) son algunos de los tipos de estrellas que se pueden estudiar en Andrómeda con telescopios como el IAC-80 y el INT.Los Observatorios del Instituto de Astrofísica de Canarias (IAC) forman parte de la red de Infraestructuras Científicas y Técnicas Singulares (ICTS) de España.

Créditos:ncyt

Detectan galaxias masivas nadando en el vasto océano de materia oscura.

Los astrónomos creían que las primeras galaxias, aquellas que se formaron unos cientos de millones de años después del Big Bang, tendrían muchas similitudes con las galaxias enanas que vemos hoy en el Universo cercano. Estas aglomeraciones de estrellas luego conformarían las galaxias más grandes que, transcurridos los primeros miles de millones de años, terminarían dominando el Universo.Sin embargo, las observaciones realizadas recientemente por el Atacama Large Millimeter/submillimeter Array (ALMA), en Chile, revelaron sorprendentes ejemplares de galaxias masivas llenas de estrellas correspondientes a una época en que el Cosmos tenía menos de mil millones de años. Estos hallazgos sugieren que los componentes galácticos pudieron unirse bastante rápido para formar galaxias más grandes.De las observaciones más recientes de ALMA se infiere que esta época de formación de galaxias masivas se remonta a tiempos aún más lejanos, cuando el Universo tenía tan solo 780 millones de años, o cerca de un 5 % de su edad actual. ALMA también reveló que estas galaxias excepcionalmente grandes están contenidas en una estructura cósmica aún más grande: un halo de materia oscura con una masa equivalente a la de varios billones de soles.

Las dos galaxias están tan cerca (menos de la distancia que hay entre la Tierra y el centro de nuestra galaxia) que pronto se fusionarán y formarán la galaxia más grande que se haya observado en ese período de la historia cósmica. El hallazgo aporta nuevos detalles sobre el nacimiento de grandes galaxias y el papel que desempeña la materia oscura en la formación de las estructuras más masivas del Universo.“Con estas increíbles observaciones de ALMA, los astrónomos están estudiando la galaxia más masiva que se conozca en los primeros mil millones de años del Universo, en pleno proceso de formación”, celebra Dan Marrone, profesor asociado de astronomía de la Universidad de Arizona en Tucson y autor principal del artículo.Así, los astrónomos observan estas galaxias durante un período de la historia cósmica conocida como era de la reionización, cuando la mayor parte del espacio intergaláctico estaba envuelto en una oscura niebla de gas de hidrógeno frío. A medida que se formaron más estrellas y galaxias, su energía fue ionizando el hidrógeno presente entre las galaxias y revelando el Universo que vemos hoy.

Para compensar el efecto del lente gravitacional en estas galaxias, se comparan los datos de ALMA (izquierda) con una imagen modelo distorsionada por un lente gravitacional (segunda imagen). La diferencia se muestra en la tercera imagen a partir de la izquierda. A la derecha se muestra la estructura de la galaxia sin el efecto de lente gravitacional. Esta imagen muestra los diferentes rangos de velocidad dentro de la galaxia, que ALMA detecta en distintas frecuencias debido al efecto Doppler.

“Para nosotros, se trataba de un período en que las pequeñas galaxias se habían esforzado por consumir el medio intergaláctico neutro”, explica Marrone. “Sin embargo, el creciente volumen de datos aportados por ALMA ha permitido corregir esa teoría, y sigue resituando más lejos en el pasado el período en que aparecieron las primeras galaxias realmente masivas”.Las galaxias estudiadas por Marrone y su equipo, conocidas colectivamente como SPT0311-58, en un principio habían sido identificadas como una única fuente por el Telescopio del Polo Sur de la Fundación Nacional de Ciencia de EE. UU. En ese entonces, las observaciones habían revelado que era un objeto muy distante y brillante en la luz infrarroja, lo cual significaba que contenía mucho polvo y probablemente estaba experimentando un brote de formación estelar. Posteriormente, las observaciones realizadas con ALMA permitieron determinar la distancia del objeto y resolver con precisión el par de galaxias en interacción.Para realizar esa observación, ALMA se benefició del efecto de un lente gravitacional, que potenció la capacidad de observación del telescopio. Los lentes gravitacionales se forman cuando un objeto masivo, como una galaxia o un cúmulo de galaxias, se interpone y curva la luz de galaxias más distantes. Ahora bien, este fenómeno distorsiona la apariencia del objeto estudiado, por lo que requiere la aplicación de sofisticados modelos informáticos para reconstituir la imagen y verla sin distorsión.

Este proceso de deconvolución reveló detalles intrigantes de las galaxias, como el hecho de que en la más grande se están formando estrellas a razón de 2.900 masas solares por año, o que contiene cerca de 270.000 millones de veces la masa de nuestro Sol en puro gas y unos 3.000 millones de veces la masa solar en polvo. “Es una cantidad enorme de polvo, considerando lo joven que es este sistema”, comenta Justin Spilker, doctorado hace poco por la Universidad de Arizona y ahora investigador de posdoctorado de la Universidad de Texas en Austin.Los astrónomos sostienen que el acelerado proceso de formación estelar en esta galaxia probablemente fue gatillado por un encuentro cercano con su pareja, que es un poco más pequeña, pero ya alberga cerca de 35.000 millones de masas solares en estrellas y está aumentando su tasa de formación estelar a un ritmo vertiginoso de 540 masas solares por año.Los investigadores pudieron observar que las galaxias de esta época eran más caóticas que las que tenemos más cerca, y plantean que sus formas dispares se deben a las grandes cantidades de gas que cae sobre ellas y a sus interacciones y fusiones con sus vecinas.Las nuevas observaciones también permitieron a los investigadores detectar la presencia de un halo gigante de materia oscura alrededor de ambas galaxias. La materia oscura es responsable de la gravedad que lleva al Universo a colapsar en distintas estructuras, como galaxias, grupos y cúmulo de galaxias, etc.

 

“Para saber si la existencia de una galaxia coincide con nuestra comprensión actual de la cosmología, hay que analizar el halo de materia oscura —la estructura colapsada de materia oscura— en la que se encuentra”, explica Chris Hayward, investigador asociado del Centro de Astrofísica Informática del Flatiron Institute, ubicado en la ciudad de Nueva York. “Afortunadamente, conocemos muy bien la proporción de materia oscura y materia normal en el Universo, así que podemos calcular la masa probable del halo de materia oscura”.Al comparar sus cálculos con las predicciones cosmológicas actuales, los investigadores descubrieron que este halo es uno de los más masivos que deben de haber existido en la época.“Estamos estudiando otras galaxias descubiertas con el Telescopio del Polo Sur, y tenemos muchos más datos que recién comenzamos a analizar. Nuestra esperanza es encontrar más objetos como este, quizá incluso más distantes, para entender mejor esta población de galaxias extremadamente polvorientas y, sobre todo, su relación con las demás galaxias de la época”, señala Joaquín Vieira, de la Universidad de Illinois en Urbana-Campaign.“De todas formas, nuestra próxima ronda de observaciones con ALMA debería ayudarnos a entender qué tan rápido se formaron estas galaxias y a mejorar nuestra comprensión de los procesos de formación de galaxias masivas durante la reionización”, agrega Marrone.

Créditos:ncyt

MUSE penetra en zonas inexploradas del Campo Ultraprofundo del Hubble.

Completado el sondeo espectroscópico más profundo hecho hasta el momento.

Utilizando el instrumento MUSE, instalado en el telescopio VLT (Very Large Telescope) de ESO, en Chile, un equipo de astrónomos ha llevado a cabo el sondeo espectroscópico más profundo hecho hasta el momento. Se han centrado en el Campo Ultraprofundo del Hubble (HUDF, Hubble Ultra Deep Field), midiendo distancias y propiedades de 1600 galaxias muy débiles, incluyendo 72 galaxias que nunca habían sido detectadas con anterioridad, ni siquiera por el Hubble. Este revolucionario conjunto de datos ya ha dado lugar a diez artículos científicos que se publican en un número especial de la revista Astronomy & Astrophysics. Los astrónomos han obtenido información sobre la formación de estrellas en el universo temprano y han podido estudiar los movimientos y otras propiedades de las galaxias tempranas, algo posible gracias a las exclusivas capacidades espectroscópicas de MUSE.

MUSE.

El equipo del sondeo MUSE HUDF, dirigido por Roland Bacon, de la Universidad de Lyon (CRAL, CNRS, Francia) utilizo el instrumento MUSE (Multi Unit Spectroscopic Explorer) para observar el Campo Ultraprofundo del Hubble (heic0406), una zona muy estudiada de la constelación meridional de Fornax (el horno). Como resultado obtuvieron las observaciones espectroscópicas más profundas jamás llevadas a cabo; se midió la precisa información espectroscópica de 1600 galaxias, diez veces más galaxias de las que se han estudiado en este campo con datos cuidadosamente obtenidos durante la última década por telescopios terrestres.Las imágenes originales del HUDF, publicadas en 2004, fueron pioneras en el campo de las observaciones de campo profundo con el Telescopio Hubble de NASA/ESA. Alcanzaron una profundidad nunca lograda antes y revelaron una colección de galaxias que se remontaba a menos de mil millones de años después del Big Bang. Posteriormente, el área fue observada numerosas veces por Hubble y otros telescopios, dando como resultado la imagen más profunda del universo hasta la fecha [1]. Ahora, a pesar de la profundidad de las observaciones de Hubble, MUSE h revelado la existencia (entre otras cosas) de 72 galaxias nunca vistas antes en esta pequeña zona del cielo.

Hubble.

Roland Bacon lo explica: “MUSE puede hacer algo que Hubble no puede: divide la luz de cada punto de la imagen en los colores que la componen para crear un espectro. Esto nos permite medir la distancia, los colores y otras propiedades de todas las galaxias que podemos ver, incluso algunas que son invisibles al propio Hubble”.Los datos de MUSE ofrecen una nueva visión de galaxias tenues muy distantes, vistas cerca del principio del universo hace unos 13000 millones de años. Ha detectado galaxias cien veces más débiles que en anteriores sondeos, añadiéndolas a este rico campo ya observado y profundizando en nuestra comprensión de las galaxias a través del tiempo.El sondeo saca a la luz a 72 candidatas a galaxias conocidas como emisoras de Lyman-alfa que brillan solo con luz Lyman-alfa [2]. La actual comprensión de la formación estelar no puede dar una explicación completa sobre la existencia de estas galaxias, que sólo parecen brillar intensamente en este color. Gracias a que MUSE dispersa la luz en los colores que la componen, estos objetos se hacen evidentes, pero siguen siendo invisibles en imágenes directas profundas como las del Hubble.

Esta imagen muestra el Campo Ultraprofundo de Hubble 2012, una versión mejorada de la imagen de Campo Ultraprofundo de Hubble con tiempo de observación adicional. Los nuevos datos han revelado por primera vez la existencia de una población de galaxias distantes con desplazamiento al rojo de entre 9 y 12, incluyendo el objeto más distante observado hasta la fecha. Estas galaxias requerirán de confirmación usando espectroscopía por parte del próximo Telescopio Espacial J.Webb de NASA/ESA/CSA.Crédito:NASA, ESA, R. Ellis (Caltech), and the HUDF 2012

“MUSE tiene la capacidad única de extraer información de algunas de las primeras galaxias del universo, incluso en una parte del cielo que ya está muy bien estudiada”, explica Jarle Brinchmann (Universidad de Leiden, Países Bajos, e Instituto de Astrofísica y Ciencias del Espacio del CAUP en Oporto, Portugal), autor principal de uno de los artículos que describen los resultados de este sondeo. “Aprendemos cosas sobre estas galaxias que sólo es posible aprender con espectroscopia, como movimientos internos y contenidos químicos. Y lo hacemos, no galaxia por galaxia, ¡sino para todas las galaxias a la vez!”.Otro hallazgo importante de este estudio fue la detección sistemática de halos luminosos de hidrógeno alrededor de galaxias en el universo temprano, dando a los astrónomos una forma nueva y prometedora de estudiar cómo fluye el material dentro y fuera de las primeras galaxias.

Esta composición muestra la zona de Campo Ultraprofundo de Hubble y destaca en azul los halos brillantes de gas alrededor de muchas galaxias lejanas, captados con el instrumento MUSE, instalado en el VLT (Very Large Telescope) de ESO, en Chile. El descubrimiento de tal cantidad de halos tan grandes, irradian radiación ultravioleta Lyma-alfa, alrededor de muchas galaxias distantes, es uno de los muchos resultados de este profundo sondeo espectroscópico.Crédito:ESO/MUSE HUDF team.

Una serie de artículos científicos explora muchas otras potenciales aplicaciones de este conjunto de datos, con trabajos que incluyen estudiar el papel de las galaxias débiles durante la reionización cósmica, la tasa de fusión de galaxias cuando el universo era joven, los vientos galácticos, la formación estelar, así como mapeo de los movimientos de las estrellas en el universo temprano.“Cabe destacar que estos datos fueron todos tomados sin el uso de la reciente actualización de la instalación de óptica adaptativa (AOF, Adaptive Optics Facility) de MUSE. La activación del AOF tras una década de intenso trabajo por parte de los astrónomos e ingenieros de ESO promete datos aún más revolucionarios en el futuro”, concluye Roland Bacon [3].

Notas

[1] El Campo Ultraprofundo de Hubble es una de las zonas más ampliamente estudiadas del espacio. Hasta la fecha, trece instrumentos de ocho telescopios, incluyendo ALMA, del que ESO es socio , han observado este campo, desde los  rayos X hasta las longitudes de onda de radio.

[2] Los electrones de carga negativa que orbitan el núcleo cargado positivamente de un átomo han cuantizado sus niveles de energía. Es decir, sólo puede existir en estados de energía específicos, y sólo pueden tener transiciones entre estos al ganar o perder cantidades precisas de energía. La radiación Lyman-alfa se produce cuando los electrones de los átomos de hidrógeno caen del segundo nivel de energía más bajo al nivel de energía más bajo. La cantidad exacta de energía perdida se libera como luz en una particular longitud de onda en la parte ultravioleta del espectro que los astrónomos pueden detectar con telescopios espaciales o terrestres en el caso de objetos con desplazamiento al rojo. Para estos datos, con desplazamiento al rojo de z ~ 3–6.6, la luz Lyman-alfa se ve como la luz visible o del infrarrojo cercano.

[3] La instalación de óptica adaptativa de MUSE ha revelado anillos nunca vistos antes alrededor de la nebulosa planetaria IC 4406 .

Créditos:eso

La galaxia más joven al descubierto.

A la izquierda, una imagen en falso color obtenida combinando exposiciones en tres filtros con el telescopio Hubble. A la derecha se observa la misma zona del cielo vista con GTC utilizando un único filtro más sensible a la emisión de estrellas muy jóvenes. / UCM
Un equipo internacional de científicos, liderado por astrofísicos de la Universidad Complutense de Madrid, ha logrado observar una galaxia, denominada A370-L57, en sus primeras etapas de formación. Su descubrimiento ha sido posible gracias al efecto lente gravitacional de un cúmulo de galaxias y al uso del mayor telescopio óptico e infrarrojo del mundo, el Gran Telescopio Canarias.

Una lente gravitacional ha permitido estudiar la galaxia más joven y menos masiva de entre las descubiertas a una gran distancia, que se muestra tal y como era durante la infancia del universo, cuando este contaba con solo mil millones de años –el 7% de su edad actual–, según una investigación internacional que lidera la Universidad Complutense de Madrid (UCM). La han denominado A370-L57.Lograr identificar galaxias tan lejanas en sus primeras etapas de formación es un gran reto para los astrofísicos, puesto que la luz que llega es muy débil. Por eso, solo se suele detectar a las más grandes y luminosas, que tienden a ser también las más evolucionadas.”A la distancia de A370-L57, incluso Hubble solo puede detectar galaxias que ya tienen cientos o miles de millones de estrellas, formadas a lo largo de decenas o cientos de millones de años. En comparación, esta tiene solo unos cuatro millones de años de edad y una masa de apenas tres millones de veces la del Sol”, explica Antonio Hernán Caballero, investigador del departamento de Astrofísica y Ciencias de la Atmósfera de la UCM y autor principal del estudio, publicado en la revista Astrophysical Journal.

Según el experto de la UCM, estudiar las propiedades de este tipo de cuerpos “pone a prueba los modelos de formación y evolución de galaxias, que predicen la existencia de un gran número poco masivas que hasta ahora no se habían podido detectar”.

Hubble y GTC de la mano

El equipo de astrofísicos ha conseguido estos resultados tras más de un año de observaciones con el telescopio espacial Hubble y el Gran Telescopio Canarias (GTC), estas últimas como parte del proyecto “SHARDS Frontier Fields”, una colaboración internacional de 65 investigadores de 8 paises liderada por la UCM. “Las imágenes con filtros SHARDS de banda intermedia nos permiten identificar con GTC galaxias que tengan una línea de emisión intensa, como es el caso de A370-57, y que sin embargo pasa desapercibida en las imágenes de Hubble por ser demasiado débil”, explica Pablo G. Pérez González, profesor de la UCM y coautor de este estudio.

La sensibilidad de los telescopios GTC y Hubble y los 15 aumentos que proporciona la lente gravitacional han permitido estudiar en detalle las propiedades de esta galaxia.Según este estudio, la galaxia descubierta tiene un diámetro de apenas 200 años luz, (casi mil veces menor que la Vía Láctea) y podría estar en proceso de fusionarse con otra cercana. Su espectro indica que la mayoría de sus estrellas son muy jóvenes y que se formaron de gas muy pobre en metales, lo que sugiere que son algunas de sus primeras estrellas, es decir, su nacimiento.“Además, A370-L57 está formando estrellas nuevas a un ritmo vertiginoso para su tamaño, de forma que en otros cuatro millones de años su masa se habrá doblado. En comparación, la Vía Láctea tardaría cien mil millones de años en doblar su masa al ritmo actual”, señala el astrofísico de la UCM.

En el futuro próximo se podrán detectar muchas galaxias como A370-L57 con GTC y Hubble, y otras aún más distantes que estén formando su primera población de estrellas y estudiarlas en gran detalle gracias al telescopio espacial James Webb, que han desarrollado conjuntamente la NASA y la Agencia Espacial Europea, y que será puesto en órbita en 2019.”El James Webb va a permitir contestar algunas de las cuestiones fundamentales sobre cómo y cuándo se formaron las primeras galaxias y estrellas, pero sin duda habrá sorpresas y surgirán también muchas preguntas nuevas. Los próximos años van a ser apasionantes”, asegura Hernán.Además de la UCM, en el estudio han participado, entre muchos otros, las universidades de La Laguna, de Pensilvania, de Tokio o de Nottingham; los institutos de Astrofísica de Canarias, de Física de Cantabria o de Astronomía de Zúrich, el Centro de Astrobiología o el Observatorio de París.

Créditos:sinc

ALMA descubre polvo frío alrededor de la estrella más cercana.

El Observatorio ALMA, en Chile, ha detectado polvo alrededor de Próxima Centauri, la estrella más cercana al Sistema Solar. Estas nuevas observaciones revelan el resplandor procedente de polvo frío en una región que se encuentra a una distancia de Próxima Centauri que supone entre una y cuatro veces la que separa a la Tierra del Sol. Los datos también insinúan la presencia de un cinturón de polvo externo incluso más frío que puede indicar la presencia de un complejo sistema planetario. Estas estructuras son similares a los cinturones mucho más grandes del Sistema Solar y también se espera que estén formadas por partículas de roca y hielo que no lograron formar planetas.

Próxima Centauri es la estrella más cercana al Sol. Es una débil enana roja que se encuentra a tan solo cuatro años luz, en la constelación meridional de Centaurus (el centauro). Es orbitada por Próxima b, un planeta templado del tamaño de la Tierra descubierto en el año 2016 que es, además, el planeta más cercano al Sistema Solar. Pero en este sistema hay algo más que un solo planeta. Nuevas observaciones de ALMA revelan la emisión de nubes de frío polvo cósmico que rodean a la estrella.El autor principal del nuevo estudio, Guillem Anglada [1], del Instituto de Astrofísica de Andalucía (CSIC), Granada (España), explica la importancia de este hallazgo: “El polvo alrededor de Próxima es importante porque, tras el descubrimiento del planeta terrestre Próxima b, es el primer indicio de la presencia de un complejo sistema planetario (formado por más de un único planeta) alrededor de la estrella más cercana a nuestro Sol”.Los cinturones de polvo son los restos del material que no se incorporó a cuerpos de mayor tamaño, como pueden ser los planetas. Las partículas de roca y hielo en estos cinturones varían en tamaño: desde el más diminuto grano de polvo, más pequeño que un milímetro, hasta cuerpos tipo asteroide con muchos kilómetros de diámetro [2].

Este gráfico muestra la gran constelación meridional de Centaurus (el Centauro) y pueden verse la mayor parte de las estrellas visibles a ojo en una noche despejada. La ubicación de la estrella más cercana al Sistema Solar, Próxima Centauri, está marcada con un círculo rojo. Próxima es demasiado débil para poder verla a simple vista, pero puede verse con un pequeño telescopio.Crédito:ESO/IAU and Sky & Telescope

El polvo parece encontrarse en un cinturón que se extiende a unos pocos cientos de millones de kilómetros de Próxima Centauri y tiene una masa total de, aproximadamente, una centésima parte de la masa de la Tierra. Se estima que este cinturón tiene una temperatura de unos –230 grados centígrados, la misma que la del Cinturón de Kuiper en el Sistema Solar exterior.También hay pistas, en los datos de ALMA, que apuntan a la presencia de otro posible cinturón de polvo incluso más frío unas diez veces más lejos. De confirmarse, la naturaleza de un cinturón exterior resultaría intrigante, dado su entorno muy frío lejos de una estrella que es más fría y más débil que el Sol. Ambos cinturones están mucho más lejos de Próxima Centauri que el planeta Próxima b, que orbita a sólo 4 millones de kilómetros de su estrella [3].Guillem Anglada explica las implicaciones del descubrimiento: “Este resultado sugiere que Próxima Centauri puede tener un sistema múltiple del planetas con una rica historia de interacciones que dieron lugar a la formación de un cinturón de polvo. Estudios más profundos podrían proporcionar información para localizar la ubicación de planetas adicionales que todavía no han sido identificados”.

Esta imagen combina una visión de los cielos del sur sobre el Telescopio de 3,6 metros de ESO, en el Observatorio La Silla (Chile), con imágenes de las estrellas Próxima Centauri (inferior derecha) y la estrella doble Alfa Centauri AB (abajo a la izquierda) tomadas con el telescopio espacial Hubble de NASA/ESA. Próxima Centauri es la estrella más cercana al Sistema Solar y tiene en órbita al planeta Próxima b, que fue descubierto usando el instrumento HARPS, instalado en el Telescopio de 3,6 metros de ESO.Crédito:Y. Beletsky (LCO)/ESO/ESA/NASA/M. Zamani

El sistema planetario de Próxima Centauri también es especialmente interesante porque hay planes para una futura exploración directa del sistema con microsondas conectadas a velas impulsadas por láser (el proyecto Starshot). Conocer el entorno polvoriento que rodea a la estrella es esencial para la planificación de este tipo de misión.El coautor Pedro Amado, desde el Instituto de Astrofísica de Andalucía, explica también que esta observación es sólo el comienzo: “Estos primeros resultados muestran que ALMA puede detectar estructuras de polvo en órbita alrededor de Próxima, y más observaciones nos darán más detalles del sistema planetario de esta estrella. Combinándolas con el estudio de discos protoplanetarios alrededor de estrellas jóvenes, podremos desvelar  muchos de los detalles de los procesos que condujeron a la formación de la Tierra y del Sistema Solar hace unos 4600 millones años. ¡Lo que estamos viendo ahora es sólo una pequeña parte de lo que está por venir!”.

En esta imagen del cielo que rodea a la brillante estrella Alfa Centauri AB también vemos a Próxima Centauri, una estrella enana roja mucho más débil que es, además, la estrella más cercana al Sistema Solar. El montaje fue creado a partir de imágenes que forman parte del sondeo Digitized Sky Survey 2. El halo azul alrededor de Alfa Centauri AB es un artefacto del proceso fotográfico, en realidad la estrella es de color amarillo pálido, como el Sol.Crédito:Digitized Sky Survey 2Acknowledgement: Davide De Martin/Mahdi Zamani

Notas

[1] En una coincidencia cósmica, el autor principal del estudio, Guillem Anglada, comparte su nombre con el astrónomo que dirigió el equipo que descubrió Próxima Centauri b, Guillem Anglada-Escudé, coautor del artículo científico en el que se publica esta investigación (aunque no son parientes).

[2] Próxima Centauri es una estrella vieja, de edad similar a la del Sistema Solar. Probablemente, los cinturones de polvo a su alrededor son similares al polvo residual del cinturón de Kuiper y el cinturón de asteroides del Sistema Solar y al polvo que crea la luz Zodiacal. Las imágenes obtenidas por ALMA de los espectaculares discos que rodean a estrellas mucho más jóvenes, como HL Tauri, contienen mucho más material  que está en proceso de formación de planetas.

[3] De confirmarse, la forma aparente del débil cinturón externo daría a los astrónomos una forma de calcular la inclinación del sistema planetario de Próxima Centauri. Parece elíptica debido a la inclinación de lo que se supone que es en realidad un anillo circular. Esto, a su vez, permitiría una mejor determinación de la masa del planeta Próxima b, del cual actualmente solo se conoce su límite inferior.

Créditos:eso

Una ‘serpiente cósmica’ revela la estructura de las galaxias lejanas.

Los viveros de estrellas parecen ser más grandes y masivos en las galaxias distantes que en las cercanas, pero esas diferencias no son tantas cuando una potente lente gravitacional aumenta los detalles. Así lo han comprobado investigadores europeos al estudiar una galaxia situada a 6.000 millones de años luz, cuya imagen aparece estirada en forma de serpiente por el efecto de una de estas gigantescas lentes.Los astrónomos conocen bastante bien los mecanismos que regulan la formación de estrellas en las galaxias: la materia interestelar forma nubes y su contracción gravitacional conduce al nacimiento de los astros en grandes grupos. Pero las observaciones de galaxias distantes con telescopios parecen revelar que el tamaño y la masa de estos viveros estelares son superiores a los más cercanos o locales.Los datos del Hubble, por ejemplo, muestran que en esas galaxias más lejanas es fácil encontrar conglomerados de gas y estrellas jóvenes con tamaños de hasta 3000 años luz, mil veces más grandes que los del universo cercano. Esto ha desencadenado un debate entre los expertos: en el pasado distante, ¿la formación estelar estaba gobernada por diferentes leyes o condiciones físicas?Ahora, un equipo internacional de astrofísicos de las Universidades de Ginebra (UNIGE) y Zurich (UZH) en Suiza y la Universidad Complutense de Madrid (UCM), han abordado esta incongruencia analizando la formación de estrellas en el universo temprano, es decir, en un lugar y tiempo remoto en el cosmos, con la ayuda de un aliado: una ‘serpiente cósmica’. Los detalles los publican en la revista Nature Astronomy.

1105135d9

La ‘serpiente’ en realidad es una galaxia situada a 6.000 millones de años luz que aparece deformada por una lente gravitacional. Esta la forman objetos extremadamente masivos, que son capaces de desviar con su campo gravitatorio la trayectoria de la luz proveniente de una galaxia más distante ubicada detrás. La luz es desviada por el objeto masivo, creando así imágenes múltiples y amplificadas de la galaxia.En este caso, los astrónomos han apuntado el Hubble a un cúmulo de galaxias con una masa total equivalente a cientos de billones de masas solares, lo que lo convierte en gran lente gravitatoria. Esta lente genera varias imágenes estiradas, combadas y casi superpuestas de una galaxia remota, formando la ‘serpiente cósmica”.“La imagen amplificada es más precisa, luminosa y nos permite observar detalles hasta 100 veces más pequeños que lo que veríamos sin el efecto de la lente gravitacional”, explica el autor principal, Antonio Cava, antiguo investigador de la UCM hoy en la UNIGE.“De hecho el cúmulo de galaxias no solo actúa como una lupa normal de las que estamos acostumbrados y que permitiría ver con más detalle la galaxia lejana, sino que produce varias imágenes de la misma galaxia en varias zonas del cielo”, añade Pablo G. Pérez González, coautor y profesor de la UCM.

Un zoom como el de Blade Runner

“Y cada imagen está deformada de una manera diferente, una es como un zoom de 100x, otra es muy parecida a lo que veríamos de la galaxia si no hubiese lente, etc. –explica–.  Es como ver una galaxia con varias cámaras desde distintas perspectivas y poder hacer zoom sobre ellas sin perder resolución espacial. Algo como lo que hacía Rick Deckard en Blade Runnner para investigar a fondo las fotos de un replicante”.

28172dfa1

Lo interesante es que la imagen de la galaxia distante se repite cinco veces a diferentes resoluciones espaciales, lo que ha permitido, por primera vez, realizar una comparación directa y establecer la estructura intrínseca y el tamaño real de los brotes de formación estelar gigantes.Lejos de concluir que las leyes del universo son diferentes cuando este era joven y distante, el equipo internacional, que también incluye científicos del CNRS y la Universidad de Lyon en Francia, ha descubierto que los grumos gigantes de formación estelar no son tan grandes y masivos como sugerían las observaciones previas de Hubble, sino que son intrínsecamente más pequeños o están compuestos por pequeñas componentes múltiples y no resueltas, solo discernibles con la resolución espacial facilitada por la lente gravitacional. Por eso no había sido posible probarlo directamente hasta el momento.Según los autores, este es un paso importante hacia la comprensión de los mecanismos fundamentales que impulsan la formación de estrellas en galaxias distantes, incluso aunque no se conozca  aún la razón de todas las diferencias observadas con respecto a las galaxias locales.

9e0ed1993

“Hemos reducido las diferencias entre lo que observamos en el universo cercano y en las galaxias distantes de un factor de 1000 a un factor de 10”, destaca Daniel Schaerer, profesor del Observatorio de Ginebra, y las diferencias restantes pueden explicarse por la naturaleza turbulenta de las galaxias distantes.“Esta serpiente cósmica es un objeto único para entender el universo en más detalle, un regalo de la naturaleza en forma de lente gigante construida con grandes cantidades de materia, el equivalente a cientos de billones de soles”, apunta Pérez González.El profesor concluye: “Esa lente dobla el espacio-tiempo y nos permite ver objetos más distantes y débiles, y con mayor resolución espacial que lo que logramos con los telescopios más potentes que podemos construir en la Tierra. Existen más de estos telescopios gravitacionales, solo hay que buscarlos y sorprendernos con lo que el universo nos enseña”.

Créditos:sinc

 

 

Revelando secretos galácticos.

 

Innumerables galaxias compiten por llamar la atención en esta deslumbrante imagen del cúmulo de Fornax: algunas aparecen sólo como puntos de luz mientras que otras dominan el primer plano. Una de ellas es la galaxia lenticular NGC 1316. El turbulento pasado de esta galaxia, ampliamente estudiada, ha dejado su huella en forma de delicada estructura de bucles, arcos y anillos que, ahora, los astrónomos han fotografiado con un detalle sin precedentes con el telescopio de rastreo del VLT. Esta imagen asombrosamente profunda revela también una miríada de objetos tenues junto con una débil luz intracumular.

f320e91e2

La mayor parte de las estrellas que se muestran en este mapa pueden verse a simple vista en una noche oscura. La pequeña constelación de Fornax (El Horno) contiene una concentración de galaxias cercanas, incluyendo las galaxias en interacción NGC 1316 y 1317 (indicadas con un círculo rojo). Son lo suficientemente brillantes como para poder verlas con un telescopio de aficionado de tamaño medio, apareciendo como débiles machas borrosas circulares.Crédito:ESO, IAU and Sky & Telescope

Esta imagen profunda, captada usando las excepcionales capacidades del VST (VLT Survey Telescope, telescopio de rastreo del VLT) en el Observatorio Paranal de ESO, en Chile, revela los secretos de los luminosos miembros del cúmulo de Fornax, uno de los cúmulos de galaxias más ricos y cercanos a la Vía Láctea.Quizás, el miembro más fascinante del cúmulo sea NGC 1316, una galaxia que ha experimentado una historia muy movida tras nacer por la fusión de varias galaxias más pequeñas. Las distorsiones gravitatorias del pasado aventurero de la galaxia han dejado su huella en la estructura lenticular [1]. En la década de 1970 se observaron por primera vez las grandes ondas, bucles y arcos embebidos en la envoltura exterior cargada de estrellas, y hoy sigue siendo un campo activo de estudio para los astrónomos, que utilizan la última tecnología de los telescopios para observar los detalles más finos de la  inusual estructura de NGC 1316 mediante una combinación de imagen y modelos.

0fc4cba7a

En esta imagen podemos ver el cielo que rodea a las galaxias NGC 1316 y 1317. Fue creada a partir de imágenes que forman parte del sondeo Digitized Sky Survey 2.Crédito:ESO/Digitized Sky Survey 2

Las fusiones que formaron NGC 1316 generaron un flujo de gas que alimenta a un exótico objeto astrofísico en su centro: un agujero negro supermasivo con una masa de aproximadamente 150 millones de veces la del Sol. A medida que acreta la masa de su entorno, este monstruo cósmico genera chorros de partículas de alta energía inmensamente potentes, que a su vez dan origen a los característicos lóbulos de emisión que se ven en longitudes de onda de radio, haciendo que NGC 1316 sea la cuarta fuente de radio más brillante del cielo.NGC 1316 también ha albergado a cuatro supernovas de tipo Ia registradas, que son eventos astrofísicos de vital importancia para los astrónomos. Dado que las supernovas de tipo Ia tienen un brillo muy definido [2], pueden utilizarse para medir la distancia a la galaxia anfitriona, en este caso, 60 millones de años luz. Estas “candelas estándar” son muy buscadas por los astrónomos, ya que son una excelente herramienta para medir de manera fiable la distancia a objetos remotos. De hecho, desempeñaron un papel clave en el revolucionario descubrimiento de la expansión acelerada de nuestro universo.

1a75f3504

En esta imagen se señalan las principales galaxias que hay alrededor de NGC 1316, una galaxia lenticular que está tanto en la constelación de Fornax (el horno) como en el cúmulo de Fornax. Esta impresionante y profunda vista del cúmulo fue captada por el telescopio de rastreo del VLT como parte del Sondeo Profundo de Fornax.Crédito:ESO/A. Grado & L. Limatola

Esta imagen fue tomada por el VST, en el Observatorio Paranal de ESO, como parte del Sondeo Profundo de Fornax, un proyecto que quiere proporcionar un estudio profundo y multi-imagen del cúmulo de Fornax. El equipo, liderado por Enrichetta Iodice (INAF-Observatorio de Capodimonte, Nápoles, Italia), ha observado previamente esta zona con el VST, revelando un débil puente de luz entre NGC 1399 y la galaxia de menor tamaño NGC 1387 . El VST fue diseñado específicamente para realizar sondeos del cielo a gran escala. Con OmegaCAM, una cámara especialmente diseñada que cuenta con 256 megapíxeles y un gran campo de visión corregido, VST puede obtener, con gran rapidez, imágenes profundas de grandes áreas del cielo, dejando a los telescopios de mayor tamaño —como el VLT (Very Large Telescope) de ESO— la tarea de explorar los detalles de objetos individuales.

Notas:

[1] Las galaxias lenticulares o “en forma de lente” son una forma intermedia entre las galaxias elípticas difusas y las archiconocidas galaxias espirales, como la Vía Láctea.

[2] El tipo de supernovas Ia se producen cuando una enana blanca que forma parte de un sistema binario de estrellas acreta lentamente la masa de su estrella compañera hasta que llega un límite que provoca la fusión nuclear del carbono. En un breve periodo de tiempo, se inicia una reacción en cadena que finalmente termina en una enorme liberación de energía: una explosión de supernova. La supernova siempre se produce cuando alcanza una masa determinada, conocida como el límite de Chandrasekhar y produce una explosión casi idéntica en cada ocasión. La semejanza en las supernovas de tipo Ia permite a los astrónomos utilizar estos eventos cataclísmicos para medir distancias.

Créditos:eso

alien-sixth-sense
los anuncios que ves en nuestra pagina, nos ayuda a sostener este sitio y que sigamos compartiendo mas allá de la Tierra, regálanos un click en estos anuncios y si te place el producto apoyanos. Por cierto te tenemos una pagina de tecnología e informática  lo mas nuevo visitala: InformaticaExperience




Impresionante ovni del tipo cigarro captado en vídeo HD: