Tag Archives: Cosmos

Medir el ancho de banda del Universo como el de una conexión a Internet.

Un nuevo sistema para medir la radiación cósmica de fondo (CMB) predice el ancho de banda máximo del universo, que es la velocidad máxima a la que puede ocurrir cualquier cambio en el universo.    El fondo de microondas cósmico (CMB) es una reverberación o resplandor residual de cuando el universo tenía aproximadamente 300.000 años de antigüedad. Se descubrió por primera vez en 1964 como un ruido débil y omnipresente en radiotelescopios. En las últimas dos décadas, los telescopios basados en satélites han comenzado a medirlo con gran precisión, revolucionando nuestra comprensión del Big Bang.    Achim Kempf, profesor de matemática aplicada en la Universidad de Waterloo, dirigió el trabajo para desarrollar el nuevo cálculo, junto con Aidan Chatwin-Davies y Robert Martin, sus antiguos estudiantes de posgrado en Waterloo.

“Es como el video en Internet”, dijo Kempf. “Si puedes medir el CMB con una resolución muy alta, esto te puede informar sobre el ancho de banda del universo, de manera similar a cómo la nitidez de la imagen de video en una llamada de Skype te informa sobre el ancho de banda de tu conexión a Internet”.    El estudio aparece en un número especial de Foundations of Physics dedicado al material que Kempf presentó al Observatorio Vaticano en Roma el año pasado. El taller internacional titulado ‘Black Holes, Gravitational Waves y Spacetime Singularities’ reunió a 25 físicos líderes de todo el mundo para presentar, colaborar e informar sobre los últimos avances teóricos y datos experimentales sobre el Big Bang. La invitación de Kempf fue el resultado de este artículo en Physical Review Letters.

ENCUENTRO CON EL PAPA.

“Este tipo de trabajo es altamente colaborativo”, dijo Kempf en un comunicado, también aliado al Perimeter Institute for Theoretical Physics. “Fue genial ver en la conferencia cómo los experimentales y los teóricos se inspiran mutuamente”.    Mientras estaban en el Vaticano, Kempf y otros investigadores presentes también compartieron su trabajo con el Papa.    “El Papa tiene un gran sentido del humor y se rió mucho con nosotros sobre el tema de la materia oscura”, dijo Kempf.    Los equipos de astrónomos están trabajando actualmente en mediciones aún más precisas del fondo cósmico de microondas. Al usar los nuevos cálculos, estas próximas mediciones podrían revelar el valor del ancho de banda fundamental del universo, y por lo tanto también nos contarán sobre lo más rápido que sucedió, el Big Bang.

Créditos:cienciaplus

Detectan por primera vez una docena de agujeros negros escondidos en el centro de nuestra galaxia.

Durante mucho tiempo, los astrónomos han predicho que hay hasta 20.000 agujeros negros escondidos en el centro de nuestra galaxia, pero hasta ahora nadie había sido capaz de detectarlos. Hasta ahora.Un equipo de científicos liderado por la Universidad de Columbia investigó los datos tomados por el Observatorio Chandra de rayos-X que orbita la Tierra para encontrar estos objetos. Se las arreglaron para encontrar una docena de fuentes de rayos X que arrojan energía desde los tres años luz más internos de la galaxia. Esta es la primera vez que alguien observa estos agujeros negros.“Es la confirmación de varias teorías que predijeron que este debería ser el caso”, explicó a Gizmodo el autor del estudio Chuck Hailey, profesor de astrofísica de la Universidad de Columbia. “Pero es extraño haber tenido tantos y no verlos realmente”.

El centro de la galaxia tiene muchas cosas, incluido un agujero negro de 4 millones de veces el tamaño del Sol llamado Sagittarius A* y muchas estrellas. Pero si has estado prestando atención a otros debates físicos, sabrás que hay lugares en el universo que los investigadores predicen que tienen muchos agujeros negros más pequeños. Serían objetos superdensos, de decenas de veces la masa del Sol, de cuya gravedad ni siquiera la luz puede escapar.El equipo de Hailey utilizó una herramienta de Chandra llamada Espectrómetro Avanzado de Imágenes CCD I (ACIS-I) que ha examinado el centro galáctico durante un total de dos semanas en los últimos 12 años. Hay muchas cosas ahí, por lo que tenían que encontrar una forma de elegir solo las fuentes que estaban buscando. “Estas fueron todas las fuentes catalogadas, pero el catálogo de Chandra solo te da una fuente y un brillo, no te dice lo que es”, dijo Hailey.

El agujero negro del centro de la Vía Láctea y las fuentes de rayos X en azulIllustration: Hailey et. al

Los científicos buscaban concretamente estrellas que estuvieran siendo absorbidas por los agujeros negros que orbitaban, causando que los agujeros escupieran rayos X. A pesar de la increíblemente concurrida que es la región, los investigadores encontraron una docena de estos ejemplos al observar las proporciones de rayos X de mayor energía y menor energía en los datos. Publicaron sus resultados este miércoles en Nature.Otros investigadores con los que hablé pensaron que esta era una observación importante con implicaciones para las ondas gravitacionales, las ondas del espacio-tiempo creadas por los agujeros negros que colisionan entre sí y que hasta hace unos años no se habían observado directamente. “Refuerza los argumentos para tener en cuenta estas poblaciones de agujeros negros como fuente potencial de ondas gravitacionales”, dijo a Gizmodo Imre Bartos, profesor asistente de la Universidad de Florida. “Esta es una confirmación emocionante que encaja con el resto de la imagen tal como la entendemos ahora”.

Ligo

Esta información también podría ayudar a otros astrónomos a predecir con qué frecuencia veremos ondas gravitacionales. Si un par de agujeros negros colisionaran en la Vía Láctea, los observatorios de ondas gravitatorias como el LIGO recibirían lecturas enormes, dijo Bartos (“tendríamos problemas con nuestros detectores”). Pero si cada galaxia tiene agujeros negros en el centro, quizás los observatorios como el LIGO detectarían eventos relativamente fuertes cada pocos años de nuestros vecinos galácticos.Esta es solo la primera evidencia. Los científicos solo encontraron 12 de estas fuentes, pero concluyen que podría haber miles, en base a una extrapolación. Hailey también dijo que la mitad de estos objetos podrían ser púlsares de milisegundos, estrellas de neutrones que emiten un rayo de radiación y que giran una vez cada pocos milisegundos. Pero incluso eso sería importante para los astrónomos, ya que los púlsares de milisegundos son un posible culpable detrás de un exceso de rayos gamma observados por el telescopio Espacial de Rayos Gamma Fermi que orbita la Tierra.

Créditos:gizmodo

La extraña galaxia sin materia oscura.

Entorno de la galaxia NGC1052 (esferoide blanquecino a la izquierda), en cuyas proximidades se encuentra NGC1052-DF2. / Adam Block/Mount Lemmon SkyCenter/University of Arizona

Aunque todavía no se ha podido detectar, la materia oscura constituye alrededor del 27% del universo y sus efectos se dejan notar en el movimiento de las galaxias. Sin embargo, investigadores de la Universidad de Yale (EE UU) han comprobado que en al menos una galaxia, denominada NGC1052-DF2, no aparece ni rastro de materia oscura, solo la masa de sus cúmulos de estrellas.

Universidad de Yale

Investigadores de EE UU y Canadá han encontrado una lejana galaxia que, de forma inesperada, no contiene materia oscura, ese misterioso material cuya masa parece tener efectos gravitatorios sobre la materia visible, como las estrellas y las galaxias, afectando a sus movimientos por el universo.De hecho, los científicos piensan que el 27 % del universo es materia oscura, siendo la materia ordinaria, la que vemos, tan solo el 5%. El 68 % restante correspondería a la también enigmática energía oscura.En la mayoría de las galaxias, la materia oscura es el tipo predominante de materia. En galaxias como la Vía Láctea, normalmente hay alrededor de 30 veces más materia oscura que materia ‘normal’ (la que se calcula con la masa de sus estrellas). Curiosamente, esta proporción de materia oscura aumenta tanto en galaxias mayores como en las menores a la nuestra.Por ejemplo, las galaxias enanas tienen 400 veces más materia oscura.En este contexto, el equipo liderado por el profesor Pieter van Dokkum de la Universidad de Yale ha analizado la galaxia NGC1052-DF2 (situada cerca de NGC 1052 en la constelación de Cetus, a unos 63 millones de años luz) y ha descubierto que carece de materia oscura.

Masa solo de estrellas

“Basándonos en los movimientos de diez cúmulos de brillantes estrellas que se encuentran dentro de ella, hemos encontrado que la masa de NGC1052-DF2 es esencialmente la misma que la masa aparente de las estrellas visibles”, señalan los autores, que destacan: “Este hallazgo sugiere que esta galaxia, a diferencia de otras, no parece tener ninguna materia oscura en absoluto”.Paradójicamente, según los científicos, el hecho de descubrir galaxias como NGC1052-DF2 puede ayudar a descartar algunas de las teorías cosmológicas que se han propuesto como alternativas a la materia oscura, incluidas las que consideran que habría que modificar las leyes de Newton para explicar el movimiento de las galaxias.

Créditos:sinc

La estrella más lejana jamás observada.

Imagen a color del cúmulo MACS J1149+2223 observado por el telescopio Hubble. A la derecha, se muestra la zona del cielo tomada en 2011 donde no se ve la estrella Ícaro, comparada con la imagen de 2016 donde se aprecia claramente esta supergigante azul. / NASA, ESA, and P. Kelly (University of Minnesota)

El telescopio espacial Hubble ha detectado una enorme estrella azul, denominada Ícaro, a unos 14.000 millones de años luz de distancia, lo que la convierte en la más lejana observada hasta la fecha. El descubrimiento ha sido posible gracias a una lente gravitacional, una gigantesca ‘lupa’ creada por un cúmulo de galaxias en el que también se han probado teorías sobre la materia oscura con la ayuda de Ícaro.

Hasta ahora solo se habían observado supernovas o explosiones de estrellas a una distancia tan lejana, pero un equipo internacional de astrónomos ha localizado a 14.000 años luz a una estrella individual, a la que han bautizado como Ícaro, gracias al telescopio espacial Hubble. Normalmente sería imposible apreciarla. De hecho solo es posible ver estrellas individuales de la Vía Láctea y de galaxias en nuestra vecindad cósmica, incluso utilizando los telescopios más potentes. Pero gracias a una lente gravitacional generada por un cúmulo de galaxias se ha podido amplificar su brillo y detectarla. “Se trata de una enorme estrella azul, cuyos fotones han tardado 9.000 millones de años luz en llegar a la Tierra, lo que equivale al 70% de la edad del universo, pero como este está en expansión, ahora la estrella se encuentra a 14.000 millones de años luz”, explica Pablo Pérez González, investigador del departamento de Física de la Tierra y Astrofísica de la Universidad Complutense de Madrid (UCM), una de las instituciones españolas que ha participado en el descubrimiento.Los astrónomos también han utilizado esta estrella, que ya existía tan solo 4.400 millones de años después del Big Bang, para probar una nueva teoría sobre la materia oscura y para estudiar de qué están compuestos los cúmulos de galaxias, unos resultados que publican esta semana en la revista Nature Astronomy.

 “Es la primera vez que vemos una estrella individual magnificada”, explica Patrick Kelly, investigador de las universidades de Minnesota y California en Berkeley (EE UU) y coautor principal del estudio. “Somos capaces de ver galaxias muy lejanas, pero esta estrella está 100 veces más lejos que la siguiente estrella individual que podemos estudiar, excepto si contamos explosiones de supernova como una estrella”, añade.“Hasta que Galileo observó a través de su telescopio el cielo, no se veían las cientos de miles de estrellas individuales que componen lo que se conoce como el Camino de Santiago, una zona brillante pero difusa del cielo”, explica Pérez González. Hasta 2016, continúa, solo era posible observar estrellas individuales de la Vía Láctea o de unas cuantas galaxias muy cercanas a nosotros, a unos cuantos millones de años luz.“Hoy ya es posible observar una estrella individual que está en el otro lado del universo, y que de hecho ya no existe”, destaca el astrónomo español. “Pero no la hemos logrado observar solo gracias a un invento del hombre, sino a la magnificencia de la propia naturaleza y a las leyes de la Física, entre las que se encuentra la perturbación que ejerce una masa en la trayectoria de los fotones. Es realmente fabuloso”.

La gigantesca lupa de una lente gravitacional

La peculiaridad cósmica que ha permitido ver esta estrella es el fenómeno de la ‘lente gravitacional’. La gravedad de un cúmulo muy masivo de galaxias actúa como una gran lupa cósmica amplificando la luz de objetos más distantes. La lente natural que ha permitido ver a Ícaro está creada por el cúmulo de galaxias llamado MACS J1149+2223, situado a unos 5.000 millones de años luz de la Tierra. Combinándola con la resolución y sensibilidad del Hubble se ha conseguido detectar y analizar esa estrella lejana.Los autores vieron varios cambios repentinos del brillo de la estrella producidos por el efecto del microlente causado por el efecto gravitatorio de astros pertenecientes al cúmulo. “Hay estrellas individuales y estrellas muertas, por ejemplo enanas blancas o estrellas de neutrones, flotando en medio del cúmulo. En realidad son tan débiles que no las vemos. Pero sabemos que están ahí, porque cada vez que una de ellas pasa justo por delante de la estrella lejana en un alineamiento perfecto, vemos cómo Ícaro se hace más brillante”, explica Kelly. “Así que tenemos a la vez un efecto macrolente producido por toda la masa del cúmulo, y un efecto de microlente producido por objetos individuales flotando en el medio intergaláctico”.

Aunque su nombre oficial es ‘MACS J1149+2223 Estrella Lentificada 1’, el equipo ha decidido llamarla como el personaje de la mitología griega que se acercó demasiado al Sol con sus alas de plumas y cera. Los modelos que el equipo de astrónomos ha hecho para explicar este magnífico evento astronómico indican que Ícaro fue amplificado por una estrella similar al Sol, presente en el medio intergaláctico del cúmulo de estrellas. El alineamiento fue perfecto y se produjo una amplificación de la luz de Ícaro en un factor de al menos 10.000.Ícaro se acercó tanto a este ‘sol’ que alcanzó la gloria como su homónimo griego. “Pudimos establecer que Ícaro es una estrella supergigante azul. Un tipo de estrella mucho más grande, masiva, caliente y, posiblemente, miles de veces más brillante que el Sol, pero que, a la distancia a la que se encuentra, es imposible observarla de manera individual incluso para Hubble, salvo que contemos con el fenómeno de lente gravitacional” comenta Ismael Pérez Fournon, del Instituto de Astrofísica de Canarias (IAC), también participante en el trabajo.

Cuatro horas de observación con el Gran Telescopio Canarias

El evento de detectar Ícaro con el Hubble fue tan extraordinario que cuando fue descubierta esta estrella todos los telescopios del mundo empezaron a observarla. “En España contamos con el mayor telescopio óptico-infrarrojo del mundo, el Gran Telescopio Canarias (GTC) así que los astrónomos españoles involucrados en el proyecto, de la UCM, del Instituto de Física de Cantabria (IFCA), la Universidad del País Vasco (UPV), el IAC y la Universidad de La Laguna, contactamos con el director de GTC, y de manera especial nos concedió 4 horas de observación esa misma noche”, cuenta Pablo Pérez González. “El GTC fue, de hecho, el único telescopio que detectó esta estrella tan lejana desde tierra, dado que Ícaro es muy débil”, comenta Pérez González.

El descubrimiento de Ícaro no es excepcional solo por el hecho de ver una estrella tan distante por primera vez. Detectar la amplificación del brillo de una estrella individual permite, de manera única, estudiar la naturaleza de la materia oscura del cúmulo. Explorando lo que flota en él, el equipo de astrónomos liderado por Kelly ha logrado poner a prueba una teoría sobre la naturaleza de la materia oscura que establece que la mayor parte de ella son agujeros negros primordiales, que tendrían una masa igual a varias decenas de soles, y que se habrían formado en el nacimiento del Universo.Según José M. Diego, investigador del IFCA, y líder de un artículo teórico que acompaña a la publicación de Nature, “si la materia oscura estuviese compuesta por agujeros negros similares a los que está detectando LIGO, la señal observada de Ícaro hubiera sido muy distinta con lo cual podemos descartar este tipo de candidatos”. Por su parte, Tom Broadhurst, de la UPV, añade: “Este tipo de estudios permitirá en el futuro acotar otros modelos de materia oscura, como por ejemplo los modelos que postulan partículas de materia oscura súperligeras y con efectos cuánticos“.

El descubrimiento de Ícaro gracias al efecto de lente gravitacional ha dado pie a una nueva forma de mirar al universo por parte de los astrónomos, que pronto buscarán más eventos parecidos cuando el James Webb Space Telescope (JWST), el telescopio de la agencias espaciales de Europa (ESA), Estados Unidos (NASA) y Canadá (CSA) que sucederá a Hubble, sea lanzado en 2019. “Esto nos permitirá estudiar estrellas individuales en galaxias lejanas, o incluso planetas que existían mucho antes de que se formara la Tierra“, concluye Pérez González.En este estudio también han participado investigadores de la Universidad de Carolina del Sur (EE UU), que lideran otro artículo sobre la lente gravitacional galáctica en el mismo número de Nature Astronomy.

Créditos:sinc

Las primeras estrellas dejaron su huella en el hidrógeno.

Detectada la primera señal del amanecer cósmico.

Con una pequeña antena en una remota región de Australia, los astrónomos han captado una señal de las primeras estrellas del universo, y revela que se ‘encendieron’ 180 millones de años después del Big Bang. El descubrimiento viene acompañado de otro inesperado: antes de que nacieran las estrellas algo enfrió el gas circundante, quizá la misteriosa materia oscura.

Astrónomos de la Universidad de Arizona y el Instituto Tecnológico de Massachusetts (MIT) han captado las débiles señales que emitió el gas hidrógeno del universo primordial, y han comprobado que se generaron tan solo 180 millones de años después del Big Bang. De hecho, es la primera evidencia de hidrógeno encontrada en el cosmos.Los autores, que esta semana publican su descubrimiento en la revista Nature, han obtenido los datos con una radioantena no mucho más grande que una lavadora, aislada de interferencias en un paraje árido de Australia.Después han analizado las bandas de absorción del gas y han determinado que sus propiedades solo se pueden explicar si ya existían estrellas en esa época tan remota. La radiación ultravioleta de aquellos astros alteró el estado de excitación del electrón del hidrógeno y, como resultado, los átomos de este gas en todo el universo comenzaron a absorber radiación de fondo, un cambio fundamental que se ha podido detectar con las ondas de radio.

Radioespectrómetro EDGES utilizado para el estudio. / CSIRO Australia

Una ventana al universo temprano.

“Encontrar esta señal minúscula ha abierto una nueva ventana al universo temprano”, destaca Judd Bowman, investigador de la Universidad de Arizona y autor principal del estudio. “Los telescopios no pueden ver lo suficientemente lejos como para obtener imágenes directas de estrellas antiguas, pero hemos visto cuándo se ‘encendieron’ en forma de ondas de radio llegadas desde el espacio”.”Esta es la primera señal real de que las estrellas comienzan a formarse y a afectar el medio que las rodea”, añade otro de los autores, Alan Rogers, científico del MIT. “Lo que sucede en ese período es que parte de la radiación de las primeras estrellas está empezando a dejar ver el hidrógeno, que se puede observar como ‘siluetas’ en determinadas frecuencias de radio (78 megahertzios)”.Los autores han comprobado que el ancho del perfil de las señales observadas se ajusta bastante a lo predicho por la teoría, pero se han sorprendido al encontrar que tiene una amplitud más grande de lo esperado, lo que indica que el gas primordial estaba más frío de lo que se consideraba hasta ahora.

Línea de tiempo del universo actualizada para mostrar cuándo surgieron las primeras estrellas, unos 180 millones de años después del Big Bang. / N.R.Fuller, National Science Foundation

Entra en escena la materia oscura

“La radiación de las primeras estrellas activa la absorción, pero la que hemos detectado es mucho más fuerte que la más potente de las absorciones que predecían los modelos, y se produce solo si el gas cósmico está muy frío”, aclara a Sinc el profesor Rennan Barkana de la Universidad de Tel Aviv (Israel), quien en otro artículo de Natureofrece una posible explicación: la materia oscura.“La materia oscura es incluso más fría que el gas, por lo que una interacción entre ellos transferirá calor del gas hacia ella”, explica el profesor, que, además, ha podido deducir con sus modelos físicos que una partícula de materia oscura no es más pesada que varias masas de protones.“Para enfriar el gas, la partícula de materia oscura no puede ser muy pesada. Por ejemplo, cuando arrojas una pelota de tenis contra una pared, regresa a ti a la misma velocidad. La pelota no pierde energía en la pared, que es muy pesada.

De forma similar, la partícula de materia oscura no puede ser mucho más pesada que un átomo de hidrógeno (el límite es de 4 protones), para que pueda enfriar el gas y explicar la radioseñal”.En cualquier caso, Barkana reconoce que podría haber otra causa del excesivo enfriamiento del gas primordial: “Lo que vemos es absorción, por gas, de ondas de radio. La otra posible explicación es que hubo más ondas de radio y más intensas en el universo temprano de lo que esperamos, producidas por algún proceso cuando comenzaban a formarse las estrellas. Esto también sería una gran sorpresa”.El autor adelanta que pronto habrá nuevas observaciones detalladas de la distribución de ondas de radio en el cielo. “La explicación de la materia oscura predice que se verá un patrón específico en estas observaciones, que se espera que lleguen en los próximos años”, concluye el profesor israelí.

Créditos:sinc

Utilizando el instrumento MUSE de ESO, instalado en el Very Large Telescope, en Chile, un equipo de astrónomos ha descubierto una estrella en el cúmulo NGC 3201 que se comporta de un modo muy extraño. Parece estar orbitando un agujero negro invisible con cerca de cuatro veces la masa del Sol. Se trataría del primer agujero negro con masa estelar inactivo de este tipo detectado en un cúmulo globular. Este importante descubrimiento tiene una gran repercusión en nuestra comprensión de la formación de estos cúmulos de estrellas, agujeros negros y de los orígenes de eventos de ondas gravitacionales. Esta impresión artística muestra el aspecto que podrían tener, en el corazón del rico del cúmulo globular de estrellas, la estrella y su masivo pero invisible agujero negro acompañante.Crédito:ESO/L. Calçada/spaceengine.org

Los cúmulos globulares de estrellas son enormes esferas de decenas de miles de estrellas que orbitan a la mayoría de las galaxias. Se encuentran entre los sistemas estelares más viejos conocidos en el universo y datan de momentos muy cercanos al comienzo del crecimiento y evolución de la galaxia. Actualmente se sabe que más de 150 pertenecen a la Vía Láctea.Utilizando el instrumento MUSE, instalado en el Very Large Telescope de ESO, en Chile, se ha estudiado un cúmulo en particular, llamado NGC 3201 y situado en la constelación meridional de Vela. Un equipo dirigido por Benjamín Giesers (Universidad Georgia Augusta de Gotinga, Alemania) descubrió que una de las estrellas [1] de NGC 3201 se comporta de un modo muy extraño: se mueve hacia atrás y hacia delante a velocidades de varios cientos de miles de kilómetros por hora, con un patrón que se repite cada 167 días [2].

caaaab0c1

Esta imagen del Telescopio Espacial Hubble de la NASA/ESA muestra la región central del rico cúmulo globular de estrellas NGC 3201 en la constelación austral de la Vela.Se ha descubierto una estrella que orbita a un agujero negro con cuatro veces la masa de nuestro Sol. La estrella se ha indicado con un círculo azul.Crédito:ESA/NASA

Benjamin Giesers estaba intrigado por el comportamiento de la estrella: “Orbitaba alrededor de algo totalmente invisible  que tenía una masa de más de cuatro veces la del Sol, ¡solo podía tratarse de un agujero negro! El primero de ellos encontrado en un cúmulo globular observando directamente su fuerza gravitacional”.La relación entre los agujeros negros y los cúmulos globulares es un asunto importante pero misterioso. Debido a sus enormes masas y a su gran edad, se cree que estos cúmulos han producido un gran número de agujeros negros de masa estelar, creados a medida que las estrellas masivas del cúmulo explotaban y colapsaban a lo largo de la extensa vida del cúmulo [3][4].

f02a6d6fc

Esta imagen de amplio campo muestra el cielo que rodea al cúmulo globular NGC 3201, en la constelación meridional de Vela. En esta imagen, además del rico cúmulo, que aparece en el centro, también vemos un gran número de estrellas de la Vía Láctea junto con unas pocas galaxias mucho más lejanas. Esta fotografía fue creada a partir de imágenes que forman parte del sondeo Digitized Sky Survey 2.Crédito:Digitized Sky Survey 2. Acknowledgement: Davide De Martin

El instrumento MUSE de ESO proporciona a los astrónomos una capacidad única para medir los movimientos de miles de estrellas lejanas al mismo tiempo. Con este nuevo hallazgo, Giesers y su equipo han podido detectar, por primera vez, un agujero negro inactivo en el corazón de un cúmulo globular, uno que, actualmente, no está tragando materia y no está rodeado por un disco brillante de gas. Han podido estimar la masa del agujero negro masivo a través de los movimientos de una estrella capturada por su enorme fuerza gravitacional [5].

f164cf5de

Esta imagen es una composición de color del cúmulo globular NGC 3201, obtenida con el instrumento WFI, instalado en el Telescopio de 2,2 metros ESO/MPG, en La Silla. Los cúmulos globulares son grandes agregados de estrellas que pueden contener hasta millones de ellas. Están entre los objetos más antiguos observados en el universo y se formaron, probablemente, al mismo tiempo que la Vía Láctea, en una fase temprana después del Big Bang. Este cúmulo globular particular está situado a unos 16.000 años luz de distancia, hacia la constelación austral de la Vela. Los datos fueron obtenidos como parte del sondeo ESO Imaging Survey (EIS), un sondeo público llevado a cabo por ESO y por los estados miembros, en preparación para la primera luz del VLT.La imagen original y los datos astronómicos se pueden encontrar en las páginas del EIS Pre-Flames Survey Data Release,donde también están disponibles muchas otras imágenes.Crédito:ESO

De las propiedades de la estrella observadas se ha determinado que tiene 0,8 veces la masa de nuestro Sol, y la masa de su misteriosa contraparte se ha calculado en alrededor de 4,36 veces masa del Sol, por lo que, seguramente, se trate de un agujero negro [6].Las recientes detecciones de fuentes de radio y de rayos X en cúmulos globulares, así como la detección en 2016 de señales de ondas gravitacionales producidas por la fusión de dos agujeros negros de masa estelar, sugiere que estos agujeros negros, relativamente pequeños, puede ser más comunes de lo que se pensaba en cúmulos globulares.

0558dd0ef

Este gráfico muestra la rica constelación sureña de Vela (Las Velas, parte del barco Argo) y marca la mayoría de las estrellas visibles a simple vista en una clara noche oscura. El cúmulo globular de estrellas NGC 3201 está marcado con un círculo rojo. Este grupo se puede ver vagamente en binoculares y se resuelve en muchas estrellas débiles con un telescopio aficionado de tamaño moderado.Crédito:ESO, IAU y Sky & Telescope

Giesers concluye: “Hasta hace poco se suponía que casi todos los agujeros negros desaparecerían de los cúmulos globulares después de poco tiempo y que sistemas como este ¡ni siquiera deberían existir! Pero, claramente, este no es el caso. Nuestro descubrimiento es la primera detección directa de los efectos gravitacionales de un agujero negro de masa estelar en un cúmulo globular. Este descubrimiento nos ayuda a comprender la formación de cúmulos globulares y la evolución de los agujeros negros y los sistemas binarios, vital en el contexto de la comprensión de fuentes de ondas gravitacionales”.

Notas

[1] La estrella descubierta es una estrella de secuencia principal apagada, lo que significa que está al final de la fase de secuencia principal de su vida. Al agotar su suministro de hidrógeno principal, va camino de convertirse en una gigante roja.

[2] Actualmente se está llevando a cabo un estudio profundo de 25 cúmulos globulares alrededor de la Vía Láctea con el instrumento MUSE de ESO con el apoyo del consorcio MUSE. Proporcionará a los astrónomos espectros de entre 600 y 27.000 estrellas de cada cúmulo. El estudio incluye el análisis de la “velocidad radial” de estrellas individuales (la velocidad a la que se alejan y se acercan a la Tierra en la línea de visión del observador). Con las medidas de la velocidad radial pueden determinarse las órbitas de las estrellas, así como las características de cualquier objeto masivo que pueden estar en órbita.

[3] En ausencia de continua formación estelar, como es el caso de cúmulos globulares, los agujeros negros de masa estelar pronto se convierten en los objetos más masivos presentes. En general, los agujeros negros de masa estelar en cúmulos globulares son unas cuatro veces tan masivos como las estrellas de baja masa de su alrededor. Teorías recientes han concluido que los agujeros negros forman un denso núcleo dentro del cúmulo, que entonces se separa del resto del material globular. Se cree que los movimientos en el centro del cúmulo eyectan y expulsan a la mayoría de los agujeros negros, lo cual significa que, tras unos miles de millones de años, solo quedarían unos pocos.

[4] Los agujeros negros de masa estelar — en inglés también conocidas como “collapsars” — se forman cuando mueren estrellas masivas, colapsando bajo su propia gravedad y explotando como hipernovas de gran alcance. Lo que queda es un agujero negro con la mayor parte de la masa de la estrella anterior, que puede ir desde un par de veces la masa de nuestro Sol hasta varias decenas de veces su masa.

[5] Como la luz no es capaz de escapar de los agujeros negros debido a la enorme gravedad de estos últimos, el principal método para detectarlos es mediante observaciones de emisiones de ondas de radio o de rayos X procedentes del material caliente que los rodea. Pero cuando un agujero negro no está interactuando con la materia caliente y, por tanto, no acumula masa o emite radiación, como en este caso, el agujero negro está “inactivo” y resulta invisible, por lo que se requiere otro método de detección.

[6] Dado que el objeto no luminoso de este sistema binario no puede observarse directamente, hay alternativas, aunque mucho menos convincentes, para explicar de qué podría tratarse. Tal vez sea un sistema estelar triple formado por dos estrellas de neutrones, fuertemente unidas, siendo la estrella observada la que orbita alrededor de ellas. Este escenario requeriría que cada estrella estrechamente unida tuviese, al menos, dos veces la masa de nuestro Sol, un tipo de sistema binario jamás observado con anterioridad.

Créditos:eso

Las últimas mediciones del universo están cada vez más cerca de confirmar la existencia de la energía oscura.

Estamos a las puertas de un gran descubrimiento que tiene el potencial para revolucionar la física actual tal y como la conocemos. Aún no sabemos qué es, pero cada vez está más claro que está ahí, oculto en una discrepancia matemática que se niega a desaparecer y trae de cabeza a los astrofísicos.La idea de que hay algo que se nos escapa en el modelo actual de la física no es ninguna exageración. Las mediciones del universo no cuadran, y la diferencia entre unos números y otros es ya tan persistente y precisa que no puede atribuirse a un error de cálculo o a la simple casualidad. El profesor Adam Riess, ganador de un premio Nobel de física en 2011 por su trabajo estudiando la expansión del universo está convencido de que la discrepancia en las mediciones pronto nos llevará a un descubrimiento que sacudirá los cimientos de la física.Lo que aún no sabemos es siquiera cuál será ese descubrimiento. Las dos principales hipótesis son la existencia de una nueva partícula: el neutrino estéril, o a la confirmación de la existencia de la energía oscura, una forma de energía completamente desconocida que según las estimaciones conforma el 70% de la energía del universo.

509c854fe

¿Cómo hemos emprendido el camino hacia este descubrimiento en ciernes? Riess lo explica en un nuevo estudio que analiza las últimas mediciones de la constante de Hubble, la cifra que mide la velocidad a la que se expande el universo. La Sociedad Española de Astronomía explica así la constante de Hubble:

El valor de la constante de Hubble, cuyo símbolo es H0, se estima en unos 71 kilómetros por segundo y por megapársec. Esto quiere decir que la expansión del universo hace que los cúmulos de galaxias se alejen unos de otros, y lo hacen a un ritmo tal que por cada megapársec de distancia (o sea, cada 3 millones de años-luz) la velocidad de alejamiento se incrementa en 71 kilómetros por segundo.

El problema, del que ya hemos hablado por aquí, es que la medición de esta constante arroja cifras diferentes en función del método utilizado. Recientemente, el proyecto H0LICOW coordinado por el Instituto Max Planck de Astrofísica en Alemania arrojaba una constante de Hubble de 73,2 km/s por megaparsec. La cifra es exactamente la misma a la que llegó el propio Adam Reiss y sus colegas analizando el brillo de 2.400 estrellas cefeidas en 19 galaxias diferentes y las compararon con 300 supernovas de tipo Ia para calcular las distancias.Dos métodos diferentes, la misma cifra. Sin embargo, si nos atenemos a las mediciones del telescopio espacial Max Planck analizando la radiación cósmica de microondas, la constante de Hubble es de 66,9km/s por megaparsec. Un estudio de 2017 que mide las oscilaciones en la materia bariónica coincide con esta cifra.Demasiados estudios que arrojan la misma cifra, y otros tantos estudios que arrojan la cifra opuesta, pero con cada vez menos variación entre ellos. Adam Riess lleva meses analizándolos todos y explica a BBC que la discrepancia en la constante de Hubble está en un nivel de confianza de 3,4 sigma. La escala sigma describe la probabilidad de que un hecho concreto no sea producto de la casualidad. Normalmente, se considera que un nivel 5 sigma es el límite a partir del cual hay que hablar de un nuevo descubrimiento.Estamos muy cerca. ¿Nueva partícula o nuevo tipo de energía? Sea cual sea la respuesta, nos permitirá acercarnos a un modelo de la física que realmente explique como funciona el universo. Las implicaciones son enormes.

Créditos:Gizmodo

Es oficial: descubren columnas de hielo de agua limpia bajo la superficie de Marte.

Si el hombre desciende sobre la primera capa de suelo rojiza de cierto planeta conocido, existe una nueva capa de hielo de agua limpia de entre 90 y 150 metros de espesor que le da al paisaje un tono azul oscuro. No se trata de la Tierra, para encontrar este escenario debes viajar hasta Marte.Al parecer, y con la ayuda de la nave Mars Reconnaissance Orbiter que lleva en el planeta rojo desde el año 2006 para realizar un mapeado completo, los investigadores liderados por Colin Dundas han dado con un hallazgo histórico: depósitos subterráneos enormes de agua helada, de incluso 170 metros de espesor en algunas zonas.El equipo localizó ocho de estas características geológicas, llamadas escarpes (vertiente de roca que corta el terreno de forma abrupta), en Marte. Un análisis de los escarpes reveló que el hielo grueso se oculta justo debajo de la superficie, a poco más de un metro. Según Dundas:

Hemos encontrado una nueva ventana en el hielo para estudiar, que esperamos sea de interés para los interesados ​​en todos los aspectos del hielo en Marte y su historia. Este hielo podría ser un objetivo tentador para futuras exploraciones, así como un recurso valioso para los terrícolas acampados en el planeta.

e5ec2f220

En realidad, no es noticia que Marte esté “helado”. Esto se sabía desde que la nave Mars Odyssey llegó al planeta y comenzó a husmear para encontrar señales químicas de hielo. El espectrómetro de rayos gamma de la nave encontró hidrógeno revelador, lo que indicó que el planeta tenía enormes cantidades de hielo. De hecho, hasta un tercio de la superficie marciana contiene hielo poco profundo. Sin embargo, elementos de detección remota como el hidrógeno no podían revelar la profundidad y la composición del mismo.Mars Reconnaissance Orbiter mapeó la superficie con mayor detalle. Dundas y sus colegas usaron sus imágenes en alta resolución para ubicar el hielo expuesto en pequeños cráteres, glaciares y capas de hielo. Los investigadores dicen que la clave fueron las imágenes en color de un tinte azulado que envió la MRO:

Eso indicaba una subcapa es, de alguna manera, diferente desde el punto de vista de la composición que la suciedad rojiza de la superficie. Es poco probable que las láminas congeladas sean una mezcla de agua y tierra. Si las conclusiones son correctas, como así parece, estamos viendo algo que es casi hielo puro, agua limpia.

df7c65886

Los escarpes existen a lo largo de las latitudes medias del planeta, descartando los glaciares que migraron desde los polos. Los autores del estudio proponen que estas capas de hielo se formaron cuando la nieve espesa cubrió a Marte durante un período de unos miles de años.El hielo enterrado se reveló después de que las estructuras se volvieron inestables y se expandieron. Dichos acantilados se formaron a través de un proceso llamado sublimación, en el cual el hielo expuesto se convirtió directamente en vapor de agua.Además, se piensa que, dada la proximidad de las láminas a la superficie, las hace muy accesibles, en teoría, a los robots exploradores, con el fin de que se pueda estudiar su composición y aprender como nunca antes sobre los valiosos registros del clima marciano y su historia geológica. Eso sin contar con la idea que no se dice, pero se piensa: el día que se envíen humanos al planeta, esta fuente de agua podría hacer las cosas mucho más sencillas.

Créditos:Gizmodo

El telescopio Hubble revela la mayor densidad de enanas marrones.

Astrónomos han descubierto con el telescopio espacial Hubble la población más grande de enanas marrones esparcidas entre las estrellas recién nacidas. El hallazgo ha sido resultado de un estudio profundo sin precedentes para detectar objetos pequeños y débiles en la Nebulosa de Orión, según un comunicado de la NASA. Las enanas marrones son objetos cósmicos más masivos que los planetas, pero demasiado pequeñas para generar energía como las estrellas. Las enanas marrones proporcionan claves importantes para comprender cómo se forman las estrellas y los planetas, y pueden estar entre los objetos más comunes en nuestra galaxia. En primer lugar, el equipo de Hubble identicó 1.200 candidatos a enanas rojas. Descubrieron que las estrellas se dividen en dos poblaciones distintas: las que tienen agua y las que no. Los brillantes con agua fueron conrmados como débiles enanas rojas. La multitud de enanas marrones y planetas otantes, libres de agua y otantes dentro de la nebulosa de Orión son todos nuevos descubrimientos. También se detectaron muchas estrellas sin agua, y estas son estrellas de fondo en la Vía Láctea. Su luz se enrojeció al pasar a través del polvo interestelar y, por lo tanto, no era relevante para el estudio del equipo.

El equipo también buscó compañeros binarios más débiles para estas 1.200 estrellas rojizas. Debido a que están tan cerca de sus estrellas primarias, estos compañeros son casi imposibles de descubrir usando métodos de observación estándar. Pero al utilizar una técnica única de imagen de alto contraste desarrollada por Laurent Pueyo en el Space Telescope Science Institute, los astrónomos pudieron resolver imágenes débiles de un gran número de compañeros candidatos. Este primer análisis no permitió a los astrónomos de Hubble determinar si estos objetos orbitan alrededor de la estrella más brillante o si su proximidad en la imagen de Hubble es resultado de una alineación aleatoria. Como consecuencia, están clasicados como candidatos por ahora. Sin embargo, la presencia de agua en sus atmósferas indica que la mayoría de ellas no pueden ser estrellas desalineadas en el fondo galáctico, y por lo tanto deben ser enanas marrones o exoplanetas compañeros. En total, el equipo encontró 17 compañeros candidatos a enanas marrones, una pareja de enanas marrones y una enana marrón con una compañera planetaria. El estudio también identicó tres posibles compañeros de masa planetaria: uno asociado a una enana roja, uno a una enana marrón y uno a otro planeta.

Créditos:ep

Astrónomos descubren que los primeros momentos del universo no eran como pensábamos.

Durante más de seis años un equipo internacional compuesto por más de 20 científicos desarrolló una investigación enfocada en la formación estelar 30 Dorado, ubicada en la Nube Grande de Magallanes, también conocida como la Nebulosa de la Tarántula. El resultado de esta labor determinó que el universo temprano tendría una mayor abundancia de estrellas masivas que el que la astrofísica contemporánea suponía.La investigación, liderada por el astrónomo de la Universidad de Oxford, Fabian Schneider y en la que participó el investigador postdoctoral del Departamento de Astronomía de la Facultad de Ciencias Físicas y Matemáticas (UChile), Venu Kalari, fue publicada en la revista Science, y viene a cambiar la manera como se entendían los primeros momentos del universo.

El equipo de científicos utilizó en su investigación el Very Large Telescopio (VLT) del Observatorio Paranal de la Organización Europea para la Observación Astronómica en el Hemisferio Austral (ESO). (Foto: ESO)

En su etapa de observación, los científicos utilizaron el Very Large Telescopio o Telescopio Muy Grande (VLT) del Observatorio Paranal de la Organización Europea para la Observación Astronómica en el Hemisferio Austral (ESO) durante 160 horas, lo que les permitió aprovechar la ventaja del que es el instrumento óptico más avanzado del mundo, y que al utilizar sus cuatro telescopios puede ver detalles con 25 veces más precisión que con telescopios individuales de mayor tamaño.”Las estrellas masivas son claves para la comprensión del cosmos, ya que tras colapsar en forma de supernovas generan los elementos químicos complejos… claves para el nacimiento de vida”, explicó Kalari, quien fue responsable de observar y analizar parte de los datos obtenidos con el VLT.”Observar en esta zona del universo -ubicada a tan sólo 50 kilo parsecs- fue como meterse dentro de una máquina del tiempo, ya que su composición química es muy similar a la del comienzo del universo y ello nos permitió inferir que en dicho período habitaban una enorme cantidad de estrellas masivas, tal como lo constatamos en la Nebulosa de la Tarántula”, continuó el investigador.

Hasta ahora se pensaba que en el Universo primitivo no había elementos aparte del Hidrógeno y el Helio, así como que las estrellas masivas representaban un porcentaje menor del total de estrellas, siendo estas las fábricas cósmicas desde las que provienen todos los elementos más pesados que el helio, como el oxígeno o el hierro de nuestra sangre, los que fueron liberados a tras su explosiva muerte, las supernovas.A juicio del investigador postdoctoral del Departamento de Astrónomos FCFM de la U. de Chile e investigador del Centro de Astrofísica CATA, ahora se abre un debate importante: ¿Qué tan universal son los resultados de la investigación? “La respuesta a esta pregunta impactará profundamente en nuestra comprensión de la evolución de nuestro Universo, y en cierto sentido, nuestras vidas, ya que todos los elementos de nuestra existencia cotidiana se formaron en estas estrellas”, concluyó.

Créditos:ncyt

alien-sixth-sense
los anuncios que ves en nuestra pagina, nos ayuda a sostener este sitio y que sigamos compartiendo mas allá de la Tierra, regálanos un click en estos anuncios y si te place el producto apoyanos. Por cierto te tenemos una pagina de tecnología e informática  lo mas nuevo visitala: InformaticaExperience




Impresionante ovni del tipo cigarro captado en vídeo HD: