Tag Archives: Chandra

Detectan por primera vez una docena de agujeros negros escondidos en el centro de nuestra galaxia.

Durante mucho tiempo, los astrónomos han predicho que hay hasta 20.000 agujeros negros escondidos en el centro de nuestra galaxia, pero hasta ahora nadie había sido capaz de detectarlos. Hasta ahora.Un equipo de científicos liderado por la Universidad de Columbia investigó los datos tomados por el Observatorio Chandra de rayos-X que orbita la Tierra para encontrar estos objetos. Se las arreglaron para encontrar una docena de fuentes de rayos X que arrojan energía desde los tres años luz más internos de la galaxia. Esta es la primera vez que alguien observa estos agujeros negros.“Es la confirmación de varias teorías que predijeron que este debería ser el caso”, explicó a Gizmodo el autor del estudio Chuck Hailey, profesor de astrofísica de la Universidad de Columbia. “Pero es extraño haber tenido tantos y no verlos realmente”.

El centro de la galaxia tiene muchas cosas, incluido un agujero negro de 4 millones de veces el tamaño del Sol llamado Sagittarius A* y muchas estrellas. Pero si has estado prestando atención a otros debates físicos, sabrás que hay lugares en el universo que los investigadores predicen que tienen muchos agujeros negros más pequeños. Serían objetos superdensos, de decenas de veces la masa del Sol, de cuya gravedad ni siquiera la luz puede escapar.El equipo de Hailey utilizó una herramienta de Chandra llamada Espectrómetro Avanzado de Imágenes CCD I (ACIS-I) que ha examinado el centro galáctico durante un total de dos semanas en los últimos 12 años. Hay muchas cosas ahí, por lo que tenían que encontrar una forma de elegir solo las fuentes que estaban buscando. “Estas fueron todas las fuentes catalogadas, pero el catálogo de Chandra solo te da una fuente y un brillo, no te dice lo que es”, dijo Hailey.

El agujero negro del centro de la Vía Láctea y las fuentes de rayos X en azulIllustration: Hailey et. al

Los científicos buscaban concretamente estrellas que estuvieran siendo absorbidas por los agujeros negros que orbitaban, causando que los agujeros escupieran rayos X. A pesar de la increíblemente concurrida que es la región, los investigadores encontraron una docena de estos ejemplos al observar las proporciones de rayos X de mayor energía y menor energía en los datos. Publicaron sus resultados este miércoles en Nature.Otros investigadores con los que hablé pensaron que esta era una observación importante con implicaciones para las ondas gravitacionales, las ondas del espacio-tiempo creadas por los agujeros negros que colisionan entre sí y que hasta hace unos años no se habían observado directamente. “Refuerza los argumentos para tener en cuenta estas poblaciones de agujeros negros como fuente potencial de ondas gravitacionales”, dijo a Gizmodo Imre Bartos, profesor asistente de la Universidad de Florida. “Esta es una confirmación emocionante que encaja con el resto de la imagen tal como la entendemos ahora”.

Ligo

Esta información también podría ayudar a otros astrónomos a predecir con qué frecuencia veremos ondas gravitacionales. Si un par de agujeros negros colisionaran en la Vía Láctea, los observatorios de ondas gravitatorias como el LIGO recibirían lecturas enormes, dijo Bartos (“tendríamos problemas con nuestros detectores”). Pero si cada galaxia tiene agujeros negros en el centro, quizás los observatorios como el LIGO detectarían eventos relativamente fuertes cada pocos años de nuestros vecinos galácticos.Esta es solo la primera evidencia. Los científicos solo encontraron 12 de estas fuentes, pero concluyen que podría haber miles, en base a una extrapolación. Hailey también dijo que la mitad de estos objetos podrían ser púlsares de milisegundos, estrellas de neutrones que emiten un rayo de radiación y que giran una vez cada pocos milisegundos. Pero incluso eso sería importante para los astrónomos, ya que los púlsares de milisegundos son un posible culpable detrás de un exceso de rayos gamma observados por el telescopio Espacial de Rayos Gamma Fermi que orbita la Tierra.

Créditos:gizmodo

El púlsar más lento del universo.

Imágenes en rayos X del remanente de la supernova RCW103, con el magnetar brillante en el centro. Izquierda: datos de observaciones entre 2011-2015. Derecha: datos de la erupción de 2016. / CSIC

Astrofísicos españoles e italianos han encontrado un púlsar que, como si fuera un faro, emite rayos X cada 6,4 horas, lo que le convierte en el de rotación más lenta detectado hasta ahora. Los púlsares son estrellas de neutrones que emiten radiación periódica y este es del tipo magnetar, por el potente campo magnético que hay a su alrededor, dentro de una supernova situada a 9.000 años luz de la Tierra.

Un estudio europeo liderado por investigadores del Consejo Superior de Investigaciones Científicas (CSIC) ha identificado el púlsar más lento detectado hasta el momento. Se trata de un magnetar atrapado en los remanentes de una supernova brillante (denominada RCW103), que explotó hace unos 2.000 años y se encuentra a unos 9.000 años luz de la Tierra. Los resultados del trabajo, en el que también participan instituciones italianas, han sido publicados en la revista The Astrophysical Journal Letters.Los magnetares son estrellas de neutrones que poseen campos magnéticos muy intensos, unas 1.000 veces más que los radio púlsares, cuya intensidad es, a su vez, mil billones de veces mayor que la del Sol. Nacidas de las explosiones de supernovas, las estrellas de neutrones se caracterizan por rotar a gran velocidad y tener una masa un poco mayor que la del Sol pero concentrada en un radio de unos 10 kilómetros aproximadamente.Su edad se determina a partir de la velocidad de rotación, ya que a medida que evolucionan van girando más lentamente, o a partir de la edad del remanente de sus supernovas, en caso de que sea detectable. “La peculiar periodicidad en la emisión de rayos X de este objeto, estimado en 6,4 horas, se debe a su periodo de rotación, que es excepcionalmente lento”, explica Nanda Rea, investigadora del CSIC en el Instituto de Ciencias del Espacio, de Barcelona.

 

Confirmación como magnetar.

La confirmación de este púlsar como magnetar ha sido posible gracias a la observación, el 22 de junio de 2016, de una erupción en banda X muy potente, típica de los magnetares, causada por la inestabilidad de sus enormes campos magnéticos. Esos datos han sido confirmados gracias a la observación mensual obtenida durante 10 años por el telescopio espacial Swift y, desde mediados de 2016, también de los telescopios espaciales Chandra y NuSTAR, que han podido caracterizar el espectro de emisión X de esta fuente antes y después de la erupción.“Este descubrimiento desvela también importante información acerca de los mecanismos de ralentización que han podido afectar a esta estrella de neutrones desde su nacimiento para que ahora, con sólo 2.000 años de edad, presente una rotación tan lenta. Posiblemente se deba a la presencia de material acumulado alrededor del púlsar tras la explosión de la supernova. Lo que aún no tenemos claro es si ese material continúa allí en forma de disco o, por el contrario, desapareció poco después de la explosión”, añade Rea.

Créditos:SINC

alien-sixth-sense
los anuncios que ves en nuestra pagina, nos ayuda a sostener este sitio y que sigamos compartiendo mas allá de la Tierra, regálanos un click en estos anuncios y si te place el producto apoyanos. Por cierto te tenemos una pagina de tecnología e informática  lo mas nuevo visitala: InformaticaExperience




Impresionante ovni del tipo cigarro captado en vídeo HD: