Category Archives: General

La extraña galaxia sin materia oscura.

Entorno de la galaxia NGC1052 (esferoide blanquecino a la izquierda), en cuyas proximidades se encuentra NGC1052-DF2. / Adam Block/Mount Lemmon SkyCenter/University of Arizona

Aunque todavía no se ha podido detectar, la materia oscura constituye alrededor del 27% del universo y sus efectos se dejan notar en el movimiento de las galaxias. Sin embargo, investigadores de la Universidad de Yale (EE UU) han comprobado que en al menos una galaxia, denominada NGC1052-DF2, no aparece ni rastro de materia oscura, solo la masa de sus cúmulos de estrellas.

Universidad de Yale

Investigadores de EE UU y Canadá han encontrado una lejana galaxia que, de forma inesperada, no contiene materia oscura, ese misterioso material cuya masa parece tener efectos gravitatorios sobre la materia visible, como las estrellas y las galaxias, afectando a sus movimientos por el universo.De hecho, los científicos piensan que el 27 % del universo es materia oscura, siendo la materia ordinaria, la que vemos, tan solo el 5%. El 68 % restante correspondería a la también enigmática energía oscura.En la mayoría de las galaxias, la materia oscura es el tipo predominante de materia. En galaxias como la Vía Láctea, normalmente hay alrededor de 30 veces más materia oscura que materia ‘normal’ (la que se calcula con la masa de sus estrellas). Curiosamente, esta proporción de materia oscura aumenta tanto en galaxias mayores como en las menores a la nuestra.Por ejemplo, las galaxias enanas tienen 400 veces más materia oscura.En este contexto, el equipo liderado por el profesor Pieter van Dokkum de la Universidad de Yale ha analizado la galaxia NGC1052-DF2 (situada cerca de NGC 1052 en la constelación de Cetus, a unos 63 millones de años luz) y ha descubierto que carece de materia oscura.

Masa solo de estrellas

“Basándonos en los movimientos de diez cúmulos de brillantes estrellas que se encuentran dentro de ella, hemos encontrado que la masa de NGC1052-DF2 es esencialmente la misma que la masa aparente de las estrellas visibles”, señalan los autores, que destacan: “Este hallazgo sugiere que esta galaxia, a diferencia de otras, no parece tener ninguna materia oscura en absoluto”.Paradójicamente, según los científicos, el hecho de descubrir galaxias como NGC1052-DF2 puede ayudar a descartar algunas de las teorías cosmológicas que se han propuesto como alternativas a la materia oscura, incluidas las que consideran que habría que modificar las leyes de Newton para explicar el movimiento de las galaxias.

Créditos:sinc

La estrella más lejana jamás observada.

Imagen a color del cúmulo MACS J1149+2223 observado por el telescopio Hubble. A la derecha, se muestra la zona del cielo tomada en 2011 donde no se ve la estrella Ícaro, comparada con la imagen de 2016 donde se aprecia claramente esta supergigante azul. / NASA, ESA, and P. Kelly (University of Minnesota)

El telescopio espacial Hubble ha detectado una enorme estrella azul, denominada Ícaro, a unos 14.000 millones de años luz de distancia, lo que la convierte en la más lejana observada hasta la fecha. El descubrimiento ha sido posible gracias a una lente gravitacional, una gigantesca ‘lupa’ creada por un cúmulo de galaxias en el que también se han probado teorías sobre la materia oscura con la ayuda de Ícaro.

Hasta ahora solo se habían observado supernovas o explosiones de estrellas a una distancia tan lejana, pero un equipo internacional de astrónomos ha localizado a 14.000 años luz a una estrella individual, a la que han bautizado como Ícaro, gracias al telescopio espacial Hubble. Normalmente sería imposible apreciarla. De hecho solo es posible ver estrellas individuales de la Vía Láctea y de galaxias en nuestra vecindad cósmica, incluso utilizando los telescopios más potentes. Pero gracias a una lente gravitacional generada por un cúmulo de galaxias se ha podido amplificar su brillo y detectarla. “Se trata de una enorme estrella azul, cuyos fotones han tardado 9.000 millones de años luz en llegar a la Tierra, lo que equivale al 70% de la edad del universo, pero como este está en expansión, ahora la estrella se encuentra a 14.000 millones de años luz”, explica Pablo Pérez González, investigador del departamento de Física de la Tierra y Astrofísica de la Universidad Complutense de Madrid (UCM), una de las instituciones españolas que ha participado en el descubrimiento.Los astrónomos también han utilizado esta estrella, que ya existía tan solo 4.400 millones de años después del Big Bang, para probar una nueva teoría sobre la materia oscura y para estudiar de qué están compuestos los cúmulos de galaxias, unos resultados que publican esta semana en la revista Nature Astronomy.

 “Es la primera vez que vemos una estrella individual magnificada”, explica Patrick Kelly, investigador de las universidades de Minnesota y California en Berkeley (EE UU) y coautor principal del estudio. “Somos capaces de ver galaxias muy lejanas, pero esta estrella está 100 veces más lejos que la siguiente estrella individual que podemos estudiar, excepto si contamos explosiones de supernova como una estrella”, añade.“Hasta que Galileo observó a través de su telescopio el cielo, no se veían las cientos de miles de estrellas individuales que componen lo que se conoce como el Camino de Santiago, una zona brillante pero difusa del cielo”, explica Pérez González. Hasta 2016, continúa, solo era posible observar estrellas individuales de la Vía Láctea o de unas cuantas galaxias muy cercanas a nosotros, a unos cuantos millones de años luz.“Hoy ya es posible observar una estrella individual que está en el otro lado del universo, y que de hecho ya no existe”, destaca el astrónomo español. “Pero no la hemos logrado observar solo gracias a un invento del hombre, sino a la magnificencia de la propia naturaleza y a las leyes de la Física, entre las que se encuentra la perturbación que ejerce una masa en la trayectoria de los fotones. Es realmente fabuloso”.

La gigantesca lupa de una lente gravitacional

La peculiaridad cósmica que ha permitido ver esta estrella es el fenómeno de la ‘lente gravitacional’. La gravedad de un cúmulo muy masivo de galaxias actúa como una gran lupa cósmica amplificando la luz de objetos más distantes. La lente natural que ha permitido ver a Ícaro está creada por el cúmulo de galaxias llamado MACS J1149+2223, situado a unos 5.000 millones de años luz de la Tierra. Combinándola con la resolución y sensibilidad del Hubble se ha conseguido detectar y analizar esa estrella lejana.Los autores vieron varios cambios repentinos del brillo de la estrella producidos por el efecto del microlente causado por el efecto gravitatorio de astros pertenecientes al cúmulo. “Hay estrellas individuales y estrellas muertas, por ejemplo enanas blancas o estrellas de neutrones, flotando en medio del cúmulo. En realidad son tan débiles que no las vemos. Pero sabemos que están ahí, porque cada vez que una de ellas pasa justo por delante de la estrella lejana en un alineamiento perfecto, vemos cómo Ícaro se hace más brillante”, explica Kelly. “Así que tenemos a la vez un efecto macrolente producido por toda la masa del cúmulo, y un efecto de microlente producido por objetos individuales flotando en el medio intergaláctico”.

Aunque su nombre oficial es ‘MACS J1149+2223 Estrella Lentificada 1’, el equipo ha decidido llamarla como el personaje de la mitología griega que se acercó demasiado al Sol con sus alas de plumas y cera. Los modelos que el equipo de astrónomos ha hecho para explicar este magnífico evento astronómico indican que Ícaro fue amplificado por una estrella similar al Sol, presente en el medio intergaláctico del cúmulo de estrellas. El alineamiento fue perfecto y se produjo una amplificación de la luz de Ícaro en un factor de al menos 10.000.Ícaro se acercó tanto a este ‘sol’ que alcanzó la gloria como su homónimo griego. “Pudimos establecer que Ícaro es una estrella supergigante azul. Un tipo de estrella mucho más grande, masiva, caliente y, posiblemente, miles de veces más brillante que el Sol, pero que, a la distancia a la que se encuentra, es imposible observarla de manera individual incluso para Hubble, salvo que contemos con el fenómeno de lente gravitacional” comenta Ismael Pérez Fournon, del Instituto de Astrofísica de Canarias (IAC), también participante en el trabajo.

Cuatro horas de observación con el Gran Telescopio Canarias

El evento de detectar Ícaro con el Hubble fue tan extraordinario que cuando fue descubierta esta estrella todos los telescopios del mundo empezaron a observarla. “En España contamos con el mayor telescopio óptico-infrarrojo del mundo, el Gran Telescopio Canarias (GTC) así que los astrónomos españoles involucrados en el proyecto, de la UCM, del Instituto de Física de Cantabria (IFCA), la Universidad del País Vasco (UPV), el IAC y la Universidad de La Laguna, contactamos con el director de GTC, y de manera especial nos concedió 4 horas de observación esa misma noche”, cuenta Pablo Pérez González. “El GTC fue, de hecho, el único telescopio que detectó esta estrella tan lejana desde tierra, dado que Ícaro es muy débil”, comenta Pérez González.

El descubrimiento de Ícaro no es excepcional solo por el hecho de ver una estrella tan distante por primera vez. Detectar la amplificación del brillo de una estrella individual permite, de manera única, estudiar la naturaleza de la materia oscura del cúmulo. Explorando lo que flota en él, el equipo de astrónomos liderado por Kelly ha logrado poner a prueba una teoría sobre la naturaleza de la materia oscura que establece que la mayor parte de ella son agujeros negros primordiales, que tendrían una masa igual a varias decenas de soles, y que se habrían formado en el nacimiento del Universo.Según José M. Diego, investigador del IFCA, y líder de un artículo teórico que acompaña a la publicación de Nature, “si la materia oscura estuviese compuesta por agujeros negros similares a los que está detectando LIGO, la señal observada de Ícaro hubiera sido muy distinta con lo cual podemos descartar este tipo de candidatos”. Por su parte, Tom Broadhurst, de la UPV, añade: “Este tipo de estudios permitirá en el futuro acotar otros modelos de materia oscura, como por ejemplo los modelos que postulan partículas de materia oscura súperligeras y con efectos cuánticos“.

El descubrimiento de Ícaro gracias al efecto de lente gravitacional ha dado pie a una nueva forma de mirar al universo por parte de los astrónomos, que pronto buscarán más eventos parecidos cuando el James Webb Space Telescope (JWST), el telescopio de la agencias espaciales de Europa (ESA), Estados Unidos (NASA) y Canadá (CSA) que sucederá a Hubble, sea lanzado en 2019. “Esto nos permitirá estudiar estrellas individuales en galaxias lejanas, o incluso planetas que existían mucho antes de que se formara la Tierra“, concluye Pérez González.En este estudio también han participado investigadores de la Universidad de Carolina del Sur (EE UU), que lideran otro artículo sobre la lente gravitacional galáctica en el mismo número de Nature Astronomy.

Créditos:sinc

La estación espacial china Tiangong-1 puede caer a la Tierra más tarde de lo esperado

La caída impredecible de la estación ha atraído la atención de todo el mundo, junto con la preocupación de que los desechos espaciales puedan chocar contra las estructuras o las personas que se encuentran debajo. Según un tratado de las Naciones Unidas, la responsabilidad recaería probablemente en China. Dicho esto, las posibilidades de que alguien sea golpeado son infinitamente pequeñas; tienes muchas más posibilidades de ganar el premio mayor de Powerball.

El astrofísico de la Universidad de Harvard Jonathan McDowell le dijo al sitio hermano de Space.com, Live Science, que él predice solo 220 a 440 lbs. (100 a 200 kilogramos) de restos de Tiangong-1 llegarán a la superficie del planeta. Aún así, la estación espacial realizará un espectáculo espectacular a medida que caiga, dijo.

“Las bolas de fuego son casi ciertas”, dijo McDowell, un frecuente comentarista de la ascendencia de Tiangong-1 que también trabaja en el Observatorio de rayos X Chandra de la NASA. “Lo que sucede es que hay algunas secciones densas del laboratorio conectadas entre sí por una estructura bastante delgada”, agregó McDowell, explicando cómo se generan las bolas de fuego. “La delgada estructura se derrite primero, convirtiendo el laboratorio en un grupo, de unas pocas a varias, dependiendo de piezas independientes que se derriten y ardan más lentamente, bolas de fuego”.

ExoMars se prepara para resolver el misterio del metano en Marte.

La presencia de metano en Marte es un tema controvertido entre los científicos. La veterana misión Mars Express detectó débiles señales de este gas, que puede tener un origen geológico o biológico, pero no será hasta esta primavera cuando la nueva misión ExoMars pueda solucionar el enigma. Este ha sido uno de los temas estrella de la reunión que han mantenido esta semana en el centro ESAC (Madrid) expertos de la Agencia Espacial Europea, Rusia y la NASA.

Este año se cumple el 15 aniversario de la misión Mars Express de la Agencia Espacial Europea (ESA), un orbitador que ha ofrecido una imagen global de Marte, desde el subsuelo hasta su atmósfera. Ahora, tras su fase de frenado, el orbitador TGO de la nueva misión ExoMars se prepara para probar sus instrumentos a partir del 23 marzo y, un mes después, ponerlos en funcionamiento con un objetivo prioritario: resolver el misterio del metano en el planeta rojo.“Científicamente, no tiene sentido que ese metano esté ahí”, ha comentado Alejandro Cardesín, experto en misiones marcianas de la ESA, durante el congreso De Mars Express a Exomars organizado esta semana en el Centro Europeo de Astronomía Espacial (ESAC), cerca de Madrid, y al que han acudido más de un centenar de científicos de Europa, Rusia y la NASA.Cardesín reconoce que hay cierta controversia sobre el

hallazgo de metano marciano porque no hay una explicación física convincente. La señal espectral registrada por Mars Express era muy débil, así que se espera que TGO pueda confirmar, o no, su existencia, ya que está diseñada específicamente para detectar gases traza en abundancias muy bajas.Por su parte, Miguel Ángel López Valverde, coinvestigador de ambas misiones en el Instituto de Astrofísica de Andalucía (IAA-CSIC), es optimista: “Me aventuro a predecir que, en un breve tiempo tras la llegada de los datos de la nueva misión, vamos a poder responder por fin al misterio del metano”.El orbitador TGO buscará la presencia de metano en la atmósfera observando ocultaciones solares, o lo que es lo mismo, puestas de sol en el planeta cada aproximadamente dos horas. Estudiará las bandas de absorción de la luz solar al atravesar la atmósfea marciana, buscando la señal de ese gas.

Mars Express y ExoMars se complementan

López Valverde explica cómo se coordinarán Mars Express y TGO para analizar el metano: “Si se observa en un determinado lugar, lo ideal sería mapearlo, ver su distribución y su evolución en los siguientes días. TGO y Mars Express tiene instrumentación para medir en nadir (punto de la esfera celeste opuesto al cenit). Ambas pueden darse cobertura geométrica y temporal en la misma región espectral que complemente los datos sobre metano. Una vez detectado este gas por Mars Express, TGO puede hacer seguimiento de la posible nube”.Pero el objetivo principal es resolver la incertidumbre alrededor del hallazgo inicial, es decir, saber cómo es el conocimiento completo del metano por parte de Mars Express.

“Cuando tengamos todo el ciclo, tal vez con los resultados de TGO tendremos que volver a interpretar los datos de Mars Express”, apunta el investigador, quien destaca también los resultados que ha aportado el proyecto UPWARDS, clausurado durante el congreso De Mars Express a Exomars.Este proyecto de tres años, financiado por el programa H2020 de la Unión Europea, ha permitido abordar, con nuevas herramientas de análisis y modelos teóricos, cuestiones como el ciclo del agua en Marte, la variabilidad de las tormentas de polvo o el lento escape de su atmósfera hacia el espacio, además del origen del gas metano. La misión ExoMars, junto a su orbitador TGO y el fallido ‘aterrizador’ Schiaparelli –que se estrelló en 2016 contra la superficie marciana–, también prepara un rover para lanzarlo en 2020 con destino al planeta rojo.

Créditos:sinc

Las primeras estrellas dejaron su huella en el hidrógeno.

Detectada la primera señal del amanecer cósmico.

Con una pequeña antena en una remota región de Australia, los astrónomos han captado una señal de las primeras estrellas del universo, y revela que se ‘encendieron’ 180 millones de años después del Big Bang. El descubrimiento viene acompañado de otro inesperado: antes de que nacieran las estrellas algo enfrió el gas circundante, quizá la misteriosa materia oscura.

Astrónomos de la Universidad de Arizona y el Instituto Tecnológico de Massachusetts (MIT) han captado las débiles señales que emitió el gas hidrógeno del universo primordial, y han comprobado que se generaron tan solo 180 millones de años después del Big Bang. De hecho, es la primera evidencia de hidrógeno encontrada en el cosmos.Los autores, que esta semana publican su descubrimiento en la revista Nature, han obtenido los datos con una radioantena no mucho más grande que una lavadora, aislada de interferencias en un paraje árido de Australia.Después han analizado las bandas de absorción del gas y han determinado que sus propiedades solo se pueden explicar si ya existían estrellas en esa época tan remota. La radiación ultravioleta de aquellos astros alteró el estado de excitación del electrón del hidrógeno y, como resultado, los átomos de este gas en todo el universo comenzaron a absorber radiación de fondo, un cambio fundamental que se ha podido detectar con las ondas de radio.

Radioespectrómetro EDGES utilizado para el estudio. / CSIRO Australia

Una ventana al universo temprano.

“Encontrar esta señal minúscula ha abierto una nueva ventana al universo temprano”, destaca Judd Bowman, investigador de la Universidad de Arizona y autor principal del estudio. “Los telescopios no pueden ver lo suficientemente lejos como para obtener imágenes directas de estrellas antiguas, pero hemos visto cuándo se ‘encendieron’ en forma de ondas de radio llegadas desde el espacio”.”Esta es la primera señal real de que las estrellas comienzan a formarse y a afectar el medio que las rodea”, añade otro de los autores, Alan Rogers, científico del MIT. “Lo que sucede en ese período es que parte de la radiación de las primeras estrellas está empezando a dejar ver el hidrógeno, que se puede observar como ‘siluetas’ en determinadas frecuencias de radio (78 megahertzios)”.Los autores han comprobado que el ancho del perfil de las señales observadas se ajusta bastante a lo predicho por la teoría, pero se han sorprendido al encontrar que tiene una amplitud más grande de lo esperado, lo que indica que el gas primordial estaba más frío de lo que se consideraba hasta ahora.

Línea de tiempo del universo actualizada para mostrar cuándo surgieron las primeras estrellas, unos 180 millones de años después del Big Bang. / N.R.Fuller, National Science Foundation

Entra en escena la materia oscura

“La radiación de las primeras estrellas activa la absorción, pero la que hemos detectado es mucho más fuerte que la más potente de las absorciones que predecían los modelos, y se produce solo si el gas cósmico está muy frío”, aclara a Sinc el profesor Rennan Barkana de la Universidad de Tel Aviv (Israel), quien en otro artículo de Natureofrece una posible explicación: la materia oscura.“La materia oscura es incluso más fría que el gas, por lo que una interacción entre ellos transferirá calor del gas hacia ella”, explica el profesor, que, además, ha podido deducir con sus modelos físicos que una partícula de materia oscura no es más pesada que varias masas de protones.“Para enfriar el gas, la partícula de materia oscura no puede ser muy pesada. Por ejemplo, cuando arrojas una pelota de tenis contra una pared, regresa a ti a la misma velocidad. La pelota no pierde energía en la pared, que es muy pesada.

De forma similar, la partícula de materia oscura no puede ser mucho más pesada que un átomo de hidrógeno (el límite es de 4 protones), para que pueda enfriar el gas y explicar la radioseñal”.En cualquier caso, Barkana reconoce que podría haber otra causa del excesivo enfriamiento del gas primordial: “Lo que vemos es absorción, por gas, de ondas de radio. La otra posible explicación es que hubo más ondas de radio y más intensas en el universo temprano de lo que esperamos, producidas por algún proceso cuando comenzaban a formarse las estrellas. Esto también sería una gran sorpresa”.El autor adelanta que pronto habrá nuevas observaciones detalladas de la distribución de ondas de radio en el cielo. “La explicación de la materia oscura predice que se verá un patrón específico en estas observaciones, que se espera que lleguen en los próximos años”, concluye el profesor israelí.

Créditos:sinc

El VLT de ESO funciona, por primera vez, como un telescopio de 16 metros.

El instrumento ESPRESSO ve su primera luz con las cuatro unidades de telescopio a la vez.

 

El instrumento ESPRESSO, instalado en el Very Large Telescope de ESO, en Chile, ha utilizado por primera vez la luz combinada de sus cuatro telescopios de 8,2 metros. Actualmente, en términos de área colectora de luz, el hecho de combinar las unidades de telescopio de esta manera convierte al VLT en el telescopio óptico más grande.

Uno de los objetivos del diseño original del VLT (Very Large Telescope) de ESO era hacer que sus cuatro unidades de telescopio (UTs) trabajaran juntas para crear un solo telescopio gigante. Con la primera luz del espectrógrafo ESPRESSO, que ha utilizado el modo cuatro-unidades-de-telescopio del VLT, se ha alcanzado este hito [1].Después de intensos preparativos por parte del consorcio ESPRESSO (liderado por el Observatorio Astronómico de la Universidad de Ginebra, con la participación de centros de investigación de Italia, Portugal, España y Suiza) y el personal ESO, el Director General de ESO, Xavier Barcons, inició estas históricas observaciones astronómicas apretando un botón en la sala de control.El científico del instrumento ESPRESSO de ESO, Gaspare Lo Curto, explica la importancia histórica de este acontecimiento: “ESO ha hecho realidad un sueño que se remonta a la época en la que el VLT fue concebido, en la década de 1980: ¡combinar la luz de las cuatro unidades de telescopio en Cerro Paranal para enviar la luz a un único instrumento!”.

e9ab44686

El instrumento ESPRESSO, instalado en el Very Large Telescope de ESO, en Chile, ha utilizado por primera vez la luz combinada de sus cuatro telescopios de 8,2 metros. Actualmente, en términos de área colectora de luz, el hecho de combinar las unidades de telescopio de esta manera convierte al VLT en el telescopio óptico más grande. En esta imagen vemos al equipo humano en la sala de control durante las observaciones de primera luz. Gaspare Lo Curto está sentado y el Director General de ESO, Xavier Barcons, es quien lleva un jersey azul.Crédito:ESO/D. Mégevand

Cuando las cuatro unidades de telescopio, de 8,2 metros cada una, combinan su capacidad colectora de luz para “alimentar” a un solo instrumento, el VLT se convierte, en efecto, en el telescopio óptico más grande del mundo en cuanto a área colectora de luz.Dos de los principales objetivos científicos de ESPRESSO son el descubrimiento y la caracterización de planetas similares a la Tierra y la búsqueda de la posible variabilidad de las constantes fundamentales de la física. Los experimentos de este último campo en particular, requieren de la observación de cuásares distantes y débiles, y este objetivo científico será el que más se beneficie de la combinación de la luz de las cuatro unidades de telescopio en ESPRESSO. Ambos dependen de una estabilidad del instrumento extremadamente alta y de una fuente de luz de referencia sumamente estable.Debido a la complejidad que conlleva combinar de este modo la luz de las cuatro unidades de telescopio (en lo que se conoce como un “foco incoherente”), hasta ahora no se había implementado. Sin embargo, durante la construcción de los telescopios se había dejado el espacio necesario y, desde el principio, se habilitó la estructura subterránea en la cima de la montaña [2].

178eedc5e

El instrumento ESPRESSO, instalado en el Very Large Telescope de ESO, en Chile, ha utilizado por primera vez la luz combinada de sus cuatro telescopios de 8,2 metros. Actualmente, en términos de área colectora de luz, el hecho de combinar las unidades de telescopio de esta manera convierte al VLT en el telescopio óptico más grande. En la imagen vemos parte de los datos adquiridos durante las observaciones de primera luz.Crédito:ESO/D. Mégevand

Un sistema de espejos, prismas y lentes transmite la luz de cada unidad de telescopio del VLT al espectrógrafo ESPRESSO, a más de 69 metros de distancia. Gracias a esta óptica compleja, ESPRESSO puede recoger la luz de los cuatro telescopios juntos, aumentando su capacidad colectora de luz, o puede recibir, de forma alternativa, la luz de alguna de las unidades de telescopio de forma individual, permitiendo un uso más flexible del tiempo de observación. EXPRESO fue específicamente desarrollado para aprovechar esta infraestructura [3].La luz de las cuatro unidades de telescopio ya se colecta de forma rutinaria en el Interferómetro del VLT para el estudio de detalles muy finos en objetos relativamente brillantes.El científico del proyecto, Paolo Molaro, afirma: “Este impresionante hito es la culminación del trabajo de muchos años por parte de un gran equipo de ingenieros y científicos. Es maravilloso ver cómo ESPRESSO trabaja con las cuatro unidades de telescopio y estoy deseando ver los emocionantes resultados científicos que están por venir”.

84ddc60d4

Enviar la luz combinada a un único instrumento dará acceso a los astrónomos a una información nunca antes disponible. Esta nueva instalación marca un antes y un después en la astronomía hecha con espectrógrafos de alta resolución. Hace uso de nuevos conceptos, tales como calibración de longitud de onda con la ayuda de un peine de frecuencia láser, proporcionando una precisión y una repetibilidad sin precedentes, a lo que ahora se suma el poder unir la capacidad colectora de luz de las cuatro unidades de telescopio [4].”Ahora, con ESPRESSO trabajando con las cuatro unidades de telescopio, tenemos una muestra anticipada de lo que podrá ofrecernos, en pocos años, la próxima generación de telescopios como el Extremely Large Telescope de ESO“, concluye el Director General de ESO, Xavier Barcons.

Notas

[1] ESPRESSO -la próxima generación de buscadores de planetas- hizo sus primeras observaciones el 6 de diciembre de 2017 utilizando sólo una de las cuatro unidades de telescopio (UTs) de 8,2 metros de diámetro que conforman el VLT.

[2] La palabra “incoherente” significa que la luz de los cuatro telescopios simplemente se suma sin tener en cuenta la información de fase, algo que sí se hace en el Interferómetro del VLT.

[3] La nueva combinación de luz incoherente tiene una capacidad colectora de luz comparable a la de un telescopio de 16 metros de apertura. Sin embargo, la resolución angular sigue siendo la de un único telescopio de 8 metros, a diferencia de lo que ocurre en el interferómetro de VLT, donde la resolución es mayor a la de un telescopio (virtual) con una apertura efectiva igual a la máxima separación entre los telescopios que lo conforman.

[4] El “AstroComb” (o “astropeine”), un sistema de calibración de longitud de onda basado en un peine de frecuencias láser, fue desarrollado y fabricado por Menlo Systems GmbH en Martinsried, Alemania.

Créditos:eso

Estas son las fotografías más remotas jamás tomadas.

Tras los sobrevuelos de Plutón y sus satélites en 2015, la nave espacial New Horizons de la NASA prosiguió su viaje por los confines del sistema solar y recientemente ha girado su cámara telescópica hacia un campo de estrellas y diversos objetos del cinturón de Kuiper (KBO), estableciendo un nuevo récord de imágenes captadas más lejos de la Tierra. Durante una operación rutinaria de calibración enfocando al cúmulo estelar Wishing Well, la cámara LORRI (Long Range Reconnaissance Imager) de la nave lo retrató el pasado 5 de diciembre, a una distancia de 6.120 millones de kilómetros (40,9 unidades astronómicas), convirtiéndose durante unas horas en la fotografía más distante registrada. En ese momento New Horizons estaba incluso más lejos de nuestro planeta que cuando la sonda Voyager 1 de la NASA tomó la famosa imagen de la Tierra, Pale Blue Dot (punto pálido azul), el 14 de febrero de 1990 a 6.060 millones de kilómetros (40,5 u.a.). Poco después las cámaras de la Voyager se apagaron, dejando su registro de distancia invicto durante más de 27 años. Pero la cámara LORRI de New Horizons, que recorre 1,1 millones de kilómetros al día, no tardó en romper su propio récord. Tan solo dos horas más tarde de haber fotografiado el cúmulo estelar, captó imágenes de dos objetos del cinturón de Kuiper: 2012 HZ84 y 2012 HE85. El estudio de los KBO es uno de los objetivos de esta misión.

Estas imágenes en falso color de los objetos 2012 HZ84 (izquierda) y 2012 HE85 del cinturón de Kuiper, captadas en diciembre de 2017, son las captadas más lejos de la Tierra por una nave espacial. (Foto: NASA/JHUAPL SwRI)

“New Horizons está siendo primera en varias cosas: primera en explorar Plutón, primera en estudiar el cinturón Kuiper, además de ser la nave espacial más rápida jamás lanzada”, destaca el investigador principal de la misión, Alan Stern, del Southwest Research Institute en Boulder, Colorado (EE UU). “Y ahora, hemos sido capaces de hacer fotos más lejos de la Tierra que lo que ninguna otra nave espacial de la historia”. Tras su maniobra de corrección de rumbo del pasado 9 de diciembre –también la más lejana realizada hasta el momento–, la nave, en estado de hibernación, se dirige ahora hacia 2014 MU69, otro objeto del cinturón de Kuiper, que sobrevolará el 1 de enero de 2019. Ese encuentro cercano de Año Nuevo será el primero de su clase y se sumará a la lista de récords de New Horizons.

Créditos:ncyt

Emergiendo de la oscuridad.

 

Una nube oscura de polvo cósmico serpentea a través de esta espectacular imagen de amplio campo, iluminada por la brillante luz de nuevas estrellas. Esta nube densa es una región de formación estelar, llamada Lupus 3, en la que nacen deslumbrantes estrellas calientes a partir del colapso de masas de gas y polvo. Esta imagen fue creada a partir de imágenes realizadas con el Telescopio de Rastreo del VLT y el Telescopio MPG/ESO de 2,2 metros, y es la imagen más detallada captada hasta ahora de esta región.

La región de formación estelar Lupus 3 se encuentra dentro de la constelación de Escorpio, a tan solo 600 años luz de la Tierra. Forma parte de un conjunto más amplio llamado las Nubes de Lupus, que toma su nombre de la adyacente constelación de Lupus (el lobo). Las nubes se asemejan a humo que ondeara a través de un fondo de millones de estrellas, pero en realidad estas nubes son una nebulosa oscura.

Este mapa muestra la ubicación de la oscura nube Lupus 3 en la Constelación de Scorpius (El Escorpión). La mayor parte de las estrellas que se ven en el mapa pueden observarse a simple vista bajo buenas condiciones meteorológicas, y la ubicación de la nube y de las nuevas estrellas jóvenes calientes, recién formadas, está marcada con un círculo rojo. Las dos estrellas brillantes de este objeto pueden verse fácilmente con un telescopio pequeño o con binoculares, y forman una atractiva estrella doble. La nube oscura solo puede verse en imágenes de mayor exposición.Crédito:ESO, IAU and Sky & Telescope

Las nebulosas son grandes extensiones de gas y polvo, entrelazadas entre las estrellas, que a veces se extienden cientos de años luz. Al contrario que muchas nebulosas que vemos espectacularmente iluminadas por la intensa radiación de estrellas calientes, las nebulosas oscuras no dejan escapar de su interior la luz de los objetos celestes. También son conocidas como nebulosas de absorción, porque se componen de densas y frías partículas de polvo que absorben y dispersan la luz que pasa a través de la nube.

Algunas de las nebulosas oscuras más conocidas son la Saco de Carbón y la Gran Grieta, que son lo suficientemente grandes como para ser vistas, a ojo desnudo, en un  contraste donde el profundo color negro resalta sobre el brillo de la Vía Láctea.

Lupus 3 tiene una forma irregular, como una serpiente deforme que cruzara el cielo. En esta imagen vemos una región de contrastes, con gruesos senderos oscuros contra el fulgor de brillantes estrellas azules en el centro. Como la mayoría de las nebulosas oscuras, Lupus 3 es una región activa de formación estelar, compuesta principalmente de protoestrellas y estrellas muy jóvenes. Las perturbaciones cercanas pueden hacer que, las zonas más densas y grumosas de la nebulosa, se contraigan a causa de la gravedad, calentándose y aumentando su presión en el proceso. Finalmente, a causa de las condiciones extremas que se dan en el corazón de esa nube que colapsa, nacerá una protoestrella.

Esta imagen de amplio campo muestra una nube oscura en la que se están formando nuevas estrellas, junto con un cúmulo de estrellas brillantes que ya han emergido de su polvorienta guardería estelar. Esta nube es conocida como Lupus 3 y se encuentra a unos 600 años luz de la Tierra en la constelación de Scorpius (El Escorpión). Es probable que el Sol se formara en una región de formación estelar similar hace más de cuatro mil millones de años. Esta visión de amplio campo fue creada a partir de imágenes del sondeo Digitized Sky Survey 2.Crédito:ESO/Digitized Sky Survey 2 – Acknowledgement: Davide De Martin

Las dos brillantes estrellas del centro de esta imagen experimentaron este proceso. Al inicio de en sus vidas, gran parte de la radiación que emitieron fue bloqueada por el espeso velo de su nebulosa anfitriona, solo visible para telescopios que observan en longitudes de onda infrarrojas y de radio. Pero, a medida que crecieron y fueron más calientes y brillantes, su intensa radiación y sus fuertes vientos estelares arrasaron los alrededores, limpiando esas áreas de gas y polvo y permitiéndoles emerger gloriosamente de su sombrío lugar de nacimiento para brillar refulgentes.

Comprender las nebulosas es fundamental para comprender los procesos de formación de estrellas. De hecho, se cree que el Sol se formó hace más de 4.000 millones de años en una región de formación estelar muy similar a Lupus 3. Dado que Lupus 3 es uno de los viveros estelares más cercanos, ha sido objeto de muchos estudios; en 2013, el Telescopio MPG/ESO de 2,2 metros, instalado en el Observatorio La Silla de ESO, en Chile, captó una imagen más pequeña de sus brillantes estrellas y de sus oscuras columnas parecidas a humo

Crédito:eso

Un diamante en bruto.

¡Entorna los ojos o no podrás verla! En el centro de esta imagen, captada con el instrumento VIMOS, instalado en el VLT (Very Large Telescope) de ESO, puedes distinguir vagamente la débil y tenue forma azul de una galaxia lejana conocida como la enana irregular de Sagitario.

Descubierta en 1977 con el telescopio Schmidt de 1 metro de ESO, en el Observatorio La Silla de ESO, esta galaxia enana de forma irregular (de ahí el nombre) está a unos tres millones de años luz de distancia de la constelación de Sagitario (el arquero). Es el miembro más distante del Grupo Local de galaxias, del cual forma parte la Vía Láctea.

A diferencia de las galaxias normales, las galaxias enanas suelen ser más pequeñas y albergan un número relativamente pequeño de estrellas. A menudo, los tirones gravitatorios de galaxias cercanas, pueden distorsionar las formas esféricas o en forma de disco de estas frágiles galaxias: este proceso puede ser el responsable de la forma ligeramente rectangular de esta particular galaxia enana.

Crédito:

ESO/M. Bellazzini et al.

Utilizando el instrumento MUSE de ESO, instalado en el Very Large Telescope, en Chile, un equipo de astrónomos ha descubierto una estrella en el cúmulo NGC 3201 que se comporta de un modo muy extraño. Parece estar orbitando un agujero negro invisible con cerca de cuatro veces la masa del Sol. Se trataría del primer agujero negro con masa estelar inactivo de este tipo detectado en un cúmulo globular. Este importante descubrimiento tiene una gran repercusión en nuestra comprensión de la formación de estos cúmulos de estrellas, agujeros negros y de los orígenes de eventos de ondas gravitacionales. Esta impresión artística muestra el aspecto que podrían tener, en el corazón del rico del cúmulo globular de estrellas, la estrella y su masivo pero invisible agujero negro acompañante.Crédito:ESO/L. Calçada/spaceengine.org

Los cúmulos globulares de estrellas son enormes esferas de decenas de miles de estrellas que orbitan a la mayoría de las galaxias. Se encuentran entre los sistemas estelares más viejos conocidos en el universo y datan de momentos muy cercanos al comienzo del crecimiento y evolución de la galaxia. Actualmente se sabe que más de 150 pertenecen a la Vía Láctea.Utilizando el instrumento MUSE, instalado en el Very Large Telescope de ESO, en Chile, se ha estudiado un cúmulo en particular, llamado NGC 3201 y situado en la constelación meridional de Vela. Un equipo dirigido por Benjamín Giesers (Universidad Georgia Augusta de Gotinga, Alemania) descubrió que una de las estrellas [1] de NGC 3201 se comporta de un modo muy extraño: se mueve hacia atrás y hacia delante a velocidades de varios cientos de miles de kilómetros por hora, con un patrón que se repite cada 167 días [2].

caaaab0c1

Esta imagen del Telescopio Espacial Hubble de la NASA/ESA muestra la región central del rico cúmulo globular de estrellas NGC 3201 en la constelación austral de la Vela.Se ha descubierto una estrella que orbita a un agujero negro con cuatro veces la masa de nuestro Sol. La estrella se ha indicado con un círculo azul.Crédito:ESA/NASA

Benjamin Giesers estaba intrigado por el comportamiento de la estrella: “Orbitaba alrededor de algo totalmente invisible  que tenía una masa de más de cuatro veces la del Sol, ¡solo podía tratarse de un agujero negro! El primero de ellos encontrado en un cúmulo globular observando directamente su fuerza gravitacional”.La relación entre los agujeros negros y los cúmulos globulares es un asunto importante pero misterioso. Debido a sus enormes masas y a su gran edad, se cree que estos cúmulos han producido un gran número de agujeros negros de masa estelar, creados a medida que las estrellas masivas del cúmulo explotaban y colapsaban a lo largo de la extensa vida del cúmulo [3][4].

f02a6d6fc

Esta imagen de amplio campo muestra el cielo que rodea al cúmulo globular NGC 3201, en la constelación meridional de Vela. En esta imagen, además del rico cúmulo, que aparece en el centro, también vemos un gran número de estrellas de la Vía Láctea junto con unas pocas galaxias mucho más lejanas. Esta fotografía fue creada a partir de imágenes que forman parte del sondeo Digitized Sky Survey 2.Crédito:Digitized Sky Survey 2. Acknowledgement: Davide De Martin

El instrumento MUSE de ESO proporciona a los astrónomos una capacidad única para medir los movimientos de miles de estrellas lejanas al mismo tiempo. Con este nuevo hallazgo, Giesers y su equipo han podido detectar, por primera vez, un agujero negro inactivo en el corazón de un cúmulo globular, uno que, actualmente, no está tragando materia y no está rodeado por un disco brillante de gas. Han podido estimar la masa del agujero negro masivo a través de los movimientos de una estrella capturada por su enorme fuerza gravitacional [5].

f164cf5de

Esta imagen es una composición de color del cúmulo globular NGC 3201, obtenida con el instrumento WFI, instalado en el Telescopio de 2,2 metros ESO/MPG, en La Silla. Los cúmulos globulares son grandes agregados de estrellas que pueden contener hasta millones de ellas. Están entre los objetos más antiguos observados en el universo y se formaron, probablemente, al mismo tiempo que la Vía Láctea, en una fase temprana después del Big Bang. Este cúmulo globular particular está situado a unos 16.000 años luz de distancia, hacia la constelación austral de la Vela. Los datos fueron obtenidos como parte del sondeo ESO Imaging Survey (EIS), un sondeo público llevado a cabo por ESO y por los estados miembros, en preparación para la primera luz del VLT.La imagen original y los datos astronómicos se pueden encontrar en las páginas del EIS Pre-Flames Survey Data Release,donde también están disponibles muchas otras imágenes.Crédito:ESO

De las propiedades de la estrella observadas se ha determinado que tiene 0,8 veces la masa de nuestro Sol, y la masa de su misteriosa contraparte se ha calculado en alrededor de 4,36 veces masa del Sol, por lo que, seguramente, se trate de un agujero negro [6].Las recientes detecciones de fuentes de radio y de rayos X en cúmulos globulares, así como la detección en 2016 de señales de ondas gravitacionales producidas por la fusión de dos agujeros negros de masa estelar, sugiere que estos agujeros negros, relativamente pequeños, puede ser más comunes de lo que se pensaba en cúmulos globulares.

0558dd0ef

Este gráfico muestra la rica constelación sureña de Vela (Las Velas, parte del barco Argo) y marca la mayoría de las estrellas visibles a simple vista en una clara noche oscura. El cúmulo globular de estrellas NGC 3201 está marcado con un círculo rojo. Este grupo se puede ver vagamente en binoculares y se resuelve en muchas estrellas débiles con un telescopio aficionado de tamaño moderado.Crédito:ESO, IAU y Sky & Telescope

Giesers concluye: “Hasta hace poco se suponía que casi todos los agujeros negros desaparecerían de los cúmulos globulares después de poco tiempo y que sistemas como este ¡ni siquiera deberían existir! Pero, claramente, este no es el caso. Nuestro descubrimiento es la primera detección directa de los efectos gravitacionales de un agujero negro de masa estelar en un cúmulo globular. Este descubrimiento nos ayuda a comprender la formación de cúmulos globulares y la evolución de los agujeros negros y los sistemas binarios, vital en el contexto de la comprensión de fuentes de ondas gravitacionales”.

Notas

[1] La estrella descubierta es una estrella de secuencia principal apagada, lo que significa que está al final de la fase de secuencia principal de su vida. Al agotar su suministro de hidrógeno principal, va camino de convertirse en una gigante roja.

[2] Actualmente se está llevando a cabo un estudio profundo de 25 cúmulos globulares alrededor de la Vía Láctea con el instrumento MUSE de ESO con el apoyo del consorcio MUSE. Proporcionará a los astrónomos espectros de entre 600 y 27.000 estrellas de cada cúmulo. El estudio incluye el análisis de la “velocidad radial” de estrellas individuales (la velocidad a la que se alejan y se acercan a la Tierra en la línea de visión del observador). Con las medidas de la velocidad radial pueden determinarse las órbitas de las estrellas, así como las características de cualquier objeto masivo que pueden estar en órbita.

[3] En ausencia de continua formación estelar, como es el caso de cúmulos globulares, los agujeros negros de masa estelar pronto se convierten en los objetos más masivos presentes. En general, los agujeros negros de masa estelar en cúmulos globulares son unas cuatro veces tan masivos como las estrellas de baja masa de su alrededor. Teorías recientes han concluido que los agujeros negros forman un denso núcleo dentro del cúmulo, que entonces se separa del resto del material globular. Se cree que los movimientos en el centro del cúmulo eyectan y expulsan a la mayoría de los agujeros negros, lo cual significa que, tras unos miles de millones de años, solo quedarían unos pocos.

[4] Los agujeros negros de masa estelar — en inglés también conocidas como “collapsars” — se forman cuando mueren estrellas masivas, colapsando bajo su propia gravedad y explotando como hipernovas de gran alcance. Lo que queda es un agujero negro con la mayor parte de la masa de la estrella anterior, que puede ir desde un par de veces la masa de nuestro Sol hasta varias decenas de veces su masa.

[5] Como la luz no es capaz de escapar de los agujeros negros debido a la enorme gravedad de estos últimos, el principal método para detectarlos es mediante observaciones de emisiones de ondas de radio o de rayos X procedentes del material caliente que los rodea. Pero cuando un agujero negro no está interactuando con la materia caliente y, por tanto, no acumula masa o emite radiación, como en este caso, el agujero negro está “inactivo” y resulta invisible, por lo que se requiere otro método de detección.

[6] Dado que el objeto no luminoso de este sistema binario no puede observarse directamente, hay alternativas, aunque mucho menos convincentes, para explicar de qué podría tratarse. Tal vez sea un sistema estelar triple formado por dos estrellas de neutrones, fuertemente unidas, siendo la estrella observada la que orbita alrededor de ellas. Este escenario requeriría que cada estrella estrechamente unida tuviese, al menos, dos veces la masa de nuestro Sol, un tipo de sistema binario jamás observado con anterioridad.

Créditos:eso

alien-sixth-sense
los anuncios que ves en nuestra pagina, nos ayuda a sostener este sitio y que sigamos compartiendo mas allá de la Tierra, regálanos un click en estos anuncios y si te place el producto apoyanos. Por cierto te tenemos una pagina de tecnología e informática  lo mas nuevo visitala: InformaticaExperience




Impresionante ovni del tipo cigarro captado en vídeo HD: